Какой встроенной функцией matlab вычисляется десятичный логарифм

REDMOND

Основные математические функции MatLab

В ML существует большое количество элементарных математических функций для выполнения действий с числами: тригонометрические, степенные, логарифмические, экспоненциальные и функции округления. Каждая функция обладает именем и списком аргументов, которые задаются в круглых скобках и, если их несколько, перечисляются через запятую.

Существуют встроенные тригонометрические и гиперболические функции: sin(x), cos(x), tan(x), cot(x), asin(x), acos(x), atan(x), acot(x), sinh(x) и т.д. Аргументы этих функций (в следующих версиях, начиная с версии 7.0) могут задаваться в радианах и градусах. У функций в градусной мере после названия добавляется буква d. sin(x) – аргумент в радианах, а sind(x) – аргумент в градусах.

Некоторые часто используемые математические функции:

· exp(x)–экспонента числа x;

· log(x)– натуральный логарифм;

· log10(x)– десятичный логарифм;

· sqrt(x)– квадратный корень;

· abs(x)– абсолютное значение x;

· mod(x, y)– остаток от целочисленного деления с учетом знака;

· rem(x, y)– остаток от целочисленного деления без учета знака;

· real(z)– вещественная часть комплексного числа;

· imag(z)– мнимая часть комплексного числа;

· round(x)– округление до ближайшего целого.

Более полный список основных математических функций MatLab:

sqrt(x) вычисление квадратного корня
exp(x) возведение в степень числа e
pow2(x) возведение в степень числа 2
log(x) вычисление натурального логарифма
log10(x) вычисление десятичного логарифма
log2(x) вычисление логарифма по основанию 2
sin(x) синус угла x, заданного в радианах
cos(x) косинус угла x, заданного в радианах
tan(x) тангенс угла x, заданного в радианах
cot(x) котангенс угла x, заданного в радианах
asin(x) арксинус
acos(x) арккосинус
atan(x) арктангенс
pi число пи
round(x) округление до ближайшего целого
fix(x) усечение дробной части числа
floor(x) округление до меньшего целого
ceil(x) округление до большего целого
mod(x,y) остаток от деления с учётом знака
sign(x) знак числа
factor(x) разложение числа на простые множители
isprime(x) истинно, если число простое
rand генерация псевдослучайного числа с равномерным законом распределения
randn генерация псевдослучайного числа с нормальным законом распределения
abs(x) вычисление модуля числа

С использованием вышеупомянутых функций, записать и сосчитать значение арифметического выражения:

Составление арифметического выражения лучше всего начинать с расстановки основных скобок выражения. Причем открытую скобку следует сразу закрывать и продолжать набор формулы внутри скобок. В этом случае число открывающих скобок будет равно числу закрывающих, и вероятность ошибки будет минимальной.

Если в выражении многократно встречаются одинаковые фрагменты, то их целесообразно вычислять 1 раз и результат помещать в отдельные переменные. Это позволяет избежать одинаковых вычислений и тем самым оптимизирует вычисления.

res=(3*cos(x^3)^2-sin(x-pi/3))/(log(abs(y))+exp (sqrt (x+1))/(2*x))*1E6

Для эффективной работы с большими наборами данных или при необходимости многократных вычислений рассмотренных средств недостаточно. В ML существует возможность записать последовательность команд в файл, сохранить его, дать ему имя и выполнить, набрав в командной строке имя файла. Это можно сделать во встроенном редакторе системы. Такие файлы называются файлами-сценариями или скрипт-файлами. При сохранении они автоматически получают расширение системы – m.

Файлы-программы (их называют скриптами или сценариями) являются самым простым типом m-файлов. Script-файл состоит из последовательности команд, не содержит заголовка, а также входных и выходных параметров. Все объекты, используемые внутри script-файла, считаются глобальными. Если в рабочем пространстве есть данные, то внутри script-файла их можно использовать, а по окончании его выполнения использовать данные, созданные с его помощью. Такие файлы используются для автоматизации выполнения большого набора инструкций. Их текст набирают в окне встроенного редактора ML.

Для выполнения файла-программы достаточно в командной строке указать имя этого скрипта. Перед запуском программы на выполнение необходимо установить нужный каталог в качестве текущего. Запуск файла на выполнение можно осуществить двумя способами: из окна редактора и из командного окна.

Для запуска программы на выполнение из окна редактора надо выбрать пункт меню Debug, Run или нажать функциональную клавишу F5, или выбрать соответствующую пиктограмму на панели инструментов. Выполнить программу, уже сохраненную на диске, можно из командного окна ML, просто набрав имя файла без расширения.

log10

Y = log10( X ) возвращает десятичный логарифм каждого элемента в массиве X . Функция принимает и действительные и комплексные входные параметры. Для вещественных значений X в интервале (0, Inf log10 возвращает вещественные значения в интервале ( -Inf Inf ). Для комплексных и отрицательных вещественных значений X , log10 функция возвращает комплексные числа.

Примеры

Вычисление скалярных значений десятичного логарифма

Исследуйте несколько значений основы 10 функций логарифма.

Вычислите десятичный логарифм 1.

Результатом является 0 , таким образом, это — x-точка-пересечения log10 функция.

Вычислите десятичный логарифм 10.

Результатом является 1 с тех пор 1 0 1 = 1 0 .

Вычислите десятичный логарифм 100.

Результатом является 2 с тех пор 1 0 2 = 1 0 0 .

Вычислите десятичный логарифм 0.

Результатом является -Inf с тех пор 1 0 — ∞ = 0 .

Десятичный логарифм с действительным знаком

Создайте вектор из чисел в интервале [0.5 5] .

Вычислите десятичный логарифм X .

Десятичный логарифм с комплексным знаком

Создайте две Декартовых сетки для X и Y .

Вычислите комплексную основу 10 логарифмов l o g 1 0 ( X + i Y ) на сетке. Используйте 1i для улучшенной скорости и робастности с комплексной арифметикой.

REDMOND

Входные параметры

X — Входной массив
скаляр | вектор | матрица | многомерный массив

Входной массив, заданный как скалярный, векторный, матричный или многомерный массив.

Типы данных: single | double
Поддержка комплексного числа: Да

Расширенные возможности

"Высокие" массивы
Осуществление вычислений с массивами, которые содержат больше строк, чем помещается в памяти.

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Генерация кода графического процессора
Сгенерируйте код CUDA® для NVIDIA® графические процессоры с помощью GPU Coder™.

Основанная на потоке среда
Запустите код в фоновом режиме с помощью MATLAB® backgroundPool или ускорьте код с Parallel Computing Toolbox™ ThreadPool .

Эта функция полностью поддерживает основанные на потоке среды. Для получения дополнительной информации смотрите функции MATLAB Запуска в Основанной на потоке Среде.

Массивы графического процессора
Ускорьте код путем работы графического процессора (GPU) с помощью Parallel Computing Toolbox™.

Указания и ограничения по применению:

Если выход функции, работающей на графическом процессоре, может быть комплексным, то необходимо явным образом задать его входные параметры как комплекс. Для получения дополнительной информации смотрите работу с Комплексными числами на графическом процессоре (Parallel Computing Toolbox) .

Для получения дополнительной информации смотрите функции MATLAB Запуска на графическом процессоре (Parallel Computing Toolbox) .

Распределенные массивы
Большие массивы раздела через объединенную память о вашем кластере с помощью Parallel Computing Toolbox™.

Эта функция полностью поддерживает распределенные массивы. Для получения дополнительной информации смотрите функции MATLAB Запуска с Распределенными Массивами (Parallel Computing Toolbox) .

Смотрите также

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Документация MATLAB

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

3. Сохраняйте структуру оригинального текста — например, не разбивайте одно предложение на два.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

log10

Y = log10( X ) returns the common logarithm of each element in array X . The function accepts both real and complex inputs. For real values of X in the interval (0, Inf ), log10 returns real values in the interval ( -Inf , Inf ). For complex and negative real values of X , the log10 function returns complex values.

Examples

Calculate Scalar Common Logarithm Values

Examine several values of the base 10 logarithm function.

Calculate the common logarithm of 1.

The result is 0 , so this is the x-intercept of the log10 function.

Calculate the common logarithm of 10.

The result is 1 since 1 0 1 = 1 0 .

Calculate the common logarithm of 100.

The result is 2 since 1 0 2 = 1 0 0 .

Calculate the common logarithm of 0.

The result is -Inf since 1 0 — ∞ = 0 .

Real-Valued Common Logarithm

Create a vector of numbers in the interval [0.5 5] .

Calculate the common logarithm of X .

Complex-Valued Common Logarithm

Create two Cartesian grids for X and Y .

Calculate the complex base 10 logarithm l o g 1 0 ( X + i Y ) on the grid. Use 1i for improved speed and robustness with complex arithmetic.

Input Arguments

X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see Tall Arrays.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel Computing Toolbox™ ThreadPool .

This function fully supports thread-based environments. For more information, see Run MATLAB Functions in Thread-Based Environment.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

If the output of the function running on the GPU can be complex, then you must explicitly specify its input arguments as complex. For more information, see Work with Complex Numbers on a GPU (Parallel Computing Toolbox) .

For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox) .

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing Toolbox™.

This function fully supports distributed arrays. For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox) .

REDMOND

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *