Как в mathcad решить систему уравнений

Foodband

Решение уравнений

Цель лекции. Показать технику численного решения нелинейных уравнений с использованием сервисов MathCAD. Показать различные методы аналитического решения систем линейных уравнений.

4.1. Численное решение нелинейных уравнений

Относительно небольшое количество задач решения уравнений можно решить аналитически. Аналитическое решение предполагает точное определение корней либо нахождение алгоритма, по которому корни всегда могут быть найдены. На практике часто приходится искать решение при помощи численных методов [1, 11]. Уравнения решаются численными методами с заданной погрешностью. В MathCAD погрешность задается системной константой TOL . Как правило, отыскание корней алгебраического уравнения (или системы уравнений) численными методами связано с двумя задачами:

  • локализация корней, т. е. определение их существования в принципе, а также исследование их количества и примерного расположения;
  • собственно отыскание корней с заданной погрешностью

Для численного решения уравнений в MathCAD существуют встроенные функции[1, 10], в которых реализованы алгоритмы известных численных методов: итерационный метод секущих ; различные градиентные методы и другие. Почти все встроенные функции предполагают, что корни уже приблизительно локализованы.

Использование функции root()

Рассмотрим решение простейших уравнений вида F(x)=0 . Решить уравнение – значит найти все его корни, т.е. такие числа, при подстановке которых в исходное уравнение получим верное равенство. Если функция нескольких аргументов F(x, у, ..)=0. , все остальные значения должны быть заданы для искомого x . Для локализации корней (исследования их количества и примерного расположения) полезно построить график функции и определить все точки пересечения графика функции с осью OX.

Функция root () вычисляет значение переменной, при котором F(x, у, ..)=0 . Если уравнение имеет несколько корней, функцию надо вызывать соответствующее число раз. Вычисления реализуются итерационным методом. Данный метод заключается в постепенном приближении к искомому корню с некоторой точностью от начального значения переменной. Точность вычислений задаётся системной переменной TOL , определённой в меню Tools/ Worksheet Options .. По умолчанию равной 0.001.

root(F(x, у, . ), x, [a, b]) возвращает с заданной точностью значение переменной, x , лежащей между a и b при котором функция равна нулю. Значения F() для a и b должны быть разных знаков. Третий аргумент не обязателен. Выбор решения определяется выбором начального значения переменной

Пример 4.1

Решить уравнение 5y^2\ln<(y+4)>-3\ln<(3y+2)>=0

  • Зададим функцию f(y)=5y^2\ln<(y+4)>-3\ln<(3y+2)>
  • Найдем начальные значения корней. Для этого построим график функции. Подберем масштаб для наилучшего визуального наблюдения точек пересечения графика с осью OX.
  • Точки пересечения графика с осью OX лежат в интервалах (-1; 0) и (0; 1)
  • Определили начальные приближения корней. Используем функцию root()
  • Можно провести проверку,

f(y):=5y^2\ln<(y+4)>-3\ln<(3y+2)>

y:=-1

y1:=root(f(y),y)

y1:=-0.274

Проверка: f(y1):=9.548 \cdot 10^<-15>

y:=1

y1:=root(f(y),y)

y1:=0.746

Проверка: f(y):=3.219

Листинг решения примера 4.1

Если корней уравнения много (больше двух) или надо исследовать определенную область на наличие корней, применяют сканирование. Оно состоит в последовательном поиске корня, начиная из множества пробных точек, покрывающих расчетную область.

Пример 4.2

Решить уравнение F1(z,y)=z^3-9z^2+20z+yz+2y^3-15y=0для y=2.

Осуществляется решение уравнения при помощи функции root, для нескольких последовательных начальных значений корней. Результат выдается в виде табулированных значений – таблицы.

  • Задаем уравнение F1().
  • Строим график.
  • Всегда существует вероятность "просмотреть" корень, расположенный между узлами сканирования. Начальное значение корня z0 вводим как табулированную переменную в визуальной области корней, определенной по графику.
  • Строим функцию U(z0) как решение через root() — значение корня уравнения F1(z0,y)=0. То есть определяется разный корень в зависимости от начального значения z0.

y:=2

F1(z,y):=z^3-9z^2+20z+yz+2y^3-15y

Начальное значение корня z :

z0:=-2,0..8

u(z0):=root(F1(z0,y),z0)

u(z0):=\begin<array><|c|ccccc|>\hline 1 \\ \hline 1 \\ \hline 2.5858 \\ \hline 1 \\ \hline 5.4142 \\ \hline 5.4142\\ \hline \end<array>

F1(1,y):=0

F1(2.5858,y)=-6.0831 \cdot 10^<-5>

F1(5.4142,y)=-1.6933 \cdot 10^<-4>

 Листинг решения примера 4.2

Функция поиска корней полинома polyroots()

Для поиска корней обычного полинома р(х) степени n MathCAD содержит очень удобную функцию:

polyroots(V) возвращает вектор корней многочлена (полинома) степени n, коэффициенты которого находятся в векторе V, имеющем длину равную n+1.

Пример 4.3

Решить уравнение x^5-2x^4-3x^3-x^2-4x=-21.

Осуществляется решение уравнения при помощи функции polyroots() (Рис.4.3).

  • Задаем вектор, элементы которого – коэффициенты полинома, начиная со свободного члена.
  • Используем функцию polyroots().
  • Решение представляется в виде матрицы, включающей все корни, в том числе и комплексные.

f(x):=(x^5-2x^4-3x^3-x^2-4x+21)

f(x)\large<=>0

V:=\begin<array><|c|ccccc|>\hline 21 \\ \hline -4 \\ \hline -1 \\ \hline -3 \\ \hline -2 \\ \hline 1\\ \hline \end<array>

x:=polyroots(V)

x:=\begin<array><|c|ccccc|>\hline -1.835 \\ \hline -0.334+1.557i \\ \hline -0.334-1.557i \\ \hline 1.503 \\ \hline 3 \\ \hline \end<array>

f(x):=\begin<array><|c|ccccc|>\hline -3.289 \cdot 10^ <-10>\\ \hline -3.289 \cdot 10^ <-10>\\ \hline -3.289 \cdot 10^<-10>-1.421i \cdot 10^ <-14>\\ \hline -3.289 \cdot 10^ <-10>\\ \hline -3.289 \cdot 10^ <-10>\\ \hline \end<array>

Как в mathcad решить систему уравнений

Главная САПР MathCad Видео уроки MathCad Урок №27. Приближенное решение систем уравнений в MathCad

В данном уроке мы с Вами будем рассматривать вариант приближенного решения систем уравнений, в случае если нет действительных решений. Для нахождения приближенного решения используется вычислительный блок " given-minerr". Обращение к нему совершенно аналогично обращению к блоку "given-find".

Графический способ решения систем алгебраических уравнений с использованием программного пакета MathCAD

учитель математики первой квалификационной категории.

Учреждение : МБОУ «Ширинская» средняя общеобразовательная школа №18

Ширинского района Республики Хакасия.

1.1.Алгоритм построения графика линейного уравнения с помощью MathCAD;……4

1.2. Исследование расположения прямой, в зависимости от изменения значения k,

в программе MathCAD . 5.

1.3 Алгоритм графического метода решения систем линейных уравнений

с помощью программы MathCAD………………………………………………………6

Актуальность работы : При изучении следующих разделов математики: взаимное расположение графиков линейных функций , графический способ решения системы линейных уравнений столкнулась с тем, что для глубокого исследования этих тем ,отводиться мало времени. Считаю, что изучение этого материала требует более детального рассмотрения, так как он прослеживается в различных заданиях повышенной сложности, в задачах математических олимпиад , в заданиях на ОГЭ, на ЕГЭ и вступительных экзаменов в Высшие Учебные Заведения.

Мотивация : как увеличить время на изучение тем: взаимное расположение графиков линейных функций, графический способ решения системы линейных уравнений.

Проблема: необходимо найти удобный , наглядный, а самое главное быстрый способ построения графиков уравнений.

Гипотеза : объект исследования «Линейная функция» ( А.Г.Мордкович ,Алгебра 7 класс,глава2),»Системы двух линейных уравнений с двумя переменными» (глава3).

Цель работы : показать графический способ решение систем алгебраических уравнений с применением популярного инженерного программного пакета MathCAD. Исследование предоставляет базовые знания работы с программой MathCAD, как они могут быть применены для решения системы двух линейных уравнений с двумя переменными графическим методом.

Результаты исследования : в процессе исследования:

-из множества программ, позволяющих рисовать графики функций, выполнять построения, была выбрана MathCAD , которая является средой визуального программирования, то есть не требует знания специфического набора команд. Простота освоения пакета, дружественный интерфейс, относительная непритязательность к возможностям компьютера явились главными причинами того, что именно этот пакет был выбран мной для решения данной проблемы;

-изучила алгоритм построения графика линейного уравнения с помощью программы MathCAD;

-изучила графический метод решения систем линейных уравнений с помощью программы MathCAD и убедилась в том, что графический метод решения системы линейных уравнений имеет большое значение.

Foodband

С помощью программы MathCAD мною были выполнены все задания из задачника Алгебра 7 класс по этой теме, ряд заданий олимпиадного характера и задания для подготовки к ОГЭ. Я смогла за короткий срок выполнить большой объем учебного материала, причем в очень наглядной и доступной форме.В процессе работы не тратила время на составление таблиц и построение графиков в тетради .Получился большой запас времени на отработку заданий повышенной сложности.

Перспективы: использовать программный продукт MathCAD., для дальнейшего изучения алгебры 7 класса (глава 8,параграф38.) ,решения задач повышенной сложности, решения заданий из ОГЭ.

В данной работе были рассмотрены примеры , каким образом решаются на MathCAD разнообразные математические задачи (решение систем линейных уравнений). Данная работа поможет ученикам быстро освоить основные навыки работы с пакетом MathCAD, а примеры и способы решения помогут их закрепить для решения новых задач.

1.1 Алгоритм построения графика линейного уравнения с помощью программы MathCAD;

7.17. На координатной плоскости хОу постройте график уравнения:

1.Задать функцию, приведенную выше. Вставить оператор абсолютного значения

2.На вкладке Графики в группе Кривые щелкнуть Вставить график , а затем выбрать График ХУ .

hello_html_5c2c0ca9.png

Появиться пустой пустой график

hello_html_32c6b732.png

3.В местозаполнителе оси У ,в левой или правой части ввести функцию у = -х+4.

4.В местозаполнителе оси Х внизу графика ввести х. Нажать клавишу «Ввод», появиться линейная кривая.

hello_html_m2e90ce19.png

hello_html_m2d41e752.png

8.28. Постройте график линейной функции у = х+4 и у=2х

а) координаты точек пресечения графика с осями координат;

б) значение у, соответствующее значению х=—2;-1;1.

в ) значение х ,которому соответствует значение у, равное-2;2;4.

Алгоритм построения

1.Задать функцию, приведенную выше. Вставить оператор абсолютного значения

2.На вкладке Графики в группе Кривые щелкнуть Вставить график , а затем выбрать График ХУ

hello_html_5c2c0ca9.png

Появиться пустой график.

3.В местозаполнителе оси У ,в левой или правой части ввести функцию у = х+4.

4.В местозаполнителе оси Х внизу графика ввести х. Нажать клавишу «Ввод», появиться линейная

hello_html_23fc0e95.png

5.Установить курсор справа от функции. Щелкнуть Добавить кривую .

hello_html_m4da8cb8a.png

Появиться новый местозапонитель оси У под текущим местозаполнителем

hello_html_76cd3dc8.png

.

А ) Найти координаты точек пресечения графика с осями координат.

На графике точки пересечения: х=0,у=- 4

Б) Найти значение у, соответствующее значению х = —2;-1;1.

В) Найти значение х ,которому соответствует значение у, равное-2;2;4.

Внесем данные и получим следующее распределение по столбцам .

hello_html_mc0a901b.pnghello_html_6f8fb4cb.pnghello_html_153ece0b.pnghello_html_m32925f6.png

hello_html_m32878442.pnghello_html_641e4371.pnghello_html_m32878442.pnghello_html_6d55b462.png

hello_html_m8ffe56.png

1.2. Исследование расположения прямой, в зависимости от изменения значения k, в программе MathCAD;

у=3х+4, у=3х, у = -3х,у=2х, у=3х-4,

hello_html_32c7b24e.png

1.3.Алгоритм графического метода решения систем линейных уравнений с помощью программы MathCAD;

11.10 .Решить графически систему уравнений (задачник Алгебра7 класс, часть 2)

hello_html_m39f77f20.png

hello_html_746b03e9.png

Ответ: система имеет одно решение (2;2)

Пример1.Решить систему уравнений

hello_html_me661bbf.png

hello_html_6f43596c.png

Ответ: система не имеет решений

Решить систему уравнений

hello_html_41f499fc.png

hello_html_m6642e783.png

Ответ: система имеет бесконечно много решений.

Вывод : графический метод решения системы линейных уравнений имеет большое значение. С его помощью можно сделать следующие важные выводы:

— графиком обоих уравнений системы линейных уравнений являются прямые;

-эти прямые могут пересекаться, причем только в одной точке,- это значит, что система имеет единственное решение;

-эти прямые могут быть параллельны — это значит, что система не имеет решений( система несовместна);

-эти прямые могут совпасть — это значит, что система имеет бесконечно много решений (система не определена).

Foodband

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *