Как решить уравнение в mathcad

REDMOND

Решение уравнений в MathCad

Для решения уравнений в Mathcad можно воспользоваться двумя способами:

Использование метода Given — Find:

Это наиболее распространенный способ решения обычных алгебраических уравнений. Он достаточно прост. В рабочем поле записываем слово Given. Это служебное слово. Оно подключает определенные программные модули mathcad для обработки исходных данных, необходимых для решения уравнения численными методами.

Затем указывается начальное приближение для искомой переменной. Это нужно для увеличения скорости и точности решения уравнения. Если начальное приближение не задать, то mathcad по умолчанию примет его равным нулю

Рис. 1. Ввод данных в поле mathcad

Далее вводится уравнение. Его можно записать в явном или неявном виде. Само уравнение набирается с клавиатуры вручную с использованием панели Calculator. Из этой панели можно взять основные математические операции: дроби, тригонометрию, факториалы и прочее. Уравнение нужно записывать с использованием логического символа "ровно". На панели Boolean он выделен жирным шрифтом (см. рис. 2)

Рис. 2. Панели Boolean и Calculator

После уравнения вводится функция Find(x) (где х — переменная). Это функция, которая возвращает результат. Значение функции Find(x) можно присвоить какой-либо переменной с помощью символа ":=" и использовать ее далее в расчетах

Для получения результата, после Find(x) следует поставить символ "" либо "=" из панели Evaluation (см. рис. 3). Причем, если вы используете символ "", то mathcad определит все корни уравнения и сформирует матрицу результатов. Но если вы используете символ "=", то mathcad выведет единственный корень, который был наиболее близок к начальному приближению. Так что, если вы не знаете сколько корней имеет уравнение, то лучше использовать стрелочку

Рис. 3. Панель "Evaluation"

В зависимости от сложности уравнения через определенное время MathCad выведет результат. На рис.4 можно рассмотреть синтаксис и различие результатов выводимых mathcad. Обратите внимание, что выводимые результаты одного и того же уравнения различны

Рис. 4. Результат численного решения уравнения

Mathcad позволяет решать уравния в символьном виде. Например, если мы заменим все числовые константы на неизвестные параметры и решим уравнение относительно x, то результат выведется в символьном виде (см. рис. 5). Причем, обратите внимание, что в данном случае нам не нужно вводить начальное приближение и мы должны использовать символ "" для вывода результата

Рис. 5. Результат символьного решения уравнения

Использование метода Solve:

Этот метод отличается от выше рассмотренного синтаксисом. На свободном поле вводим уравнение с использованием логического символа "ровно" из панели Boolean. После ввода уравнения, не смещая курсор ввода, на панели Symbolic нажимаем кнопку solve (см. рис. 6)

Рис. 6. Панель Symbolic

Затем ставим запятую и вводим переменную, относительно которой нужно решить уравнение (в нашем случае это x). Нажимаем Enter на клавиатуре и смотрим результат (см. рис. 7)

Рис. 7. Результат решения уравнения методом Solve

Обратите внимание, что метод подходит как для численного так и для символьного представления результатов

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fergiat. Pellentesque in mi eu massa lacinia malesuada et a elit. Donec urna ex, lacinia in purus ac, pretium pulvinar mauris. Curabitur sapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis dapibus rutrum facilisis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam tristique libero eu nibh porttitor fermentum. Nullam venenatis erat id vehicula viverra. Nunc ultrices eros ut ultricies condimentum. Mauris risus lacus, blandit sit amet venenatis non, bibendum vitae dolor. Nunc lorem mauris, fringilla in aliquam at, euismod in lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non lorem sit amet elit placerat maximus. Pellentesque aliquam maximus risus, vel venenatis mauris vehicula hendrerit.

Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fersapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique lorem ipsum dolor.

23. Тема 6. Решение уравнений и систем. Краткие теоретические сведения

Х – имя переменной, относительно которой решается уравнение.

Функция Root Реализует алгоритм поиска корня численным методом и требует предварительного задания начального приближения искомой переменной Х. Поиск корня будет производиться вблизи этого числа. Таким образом, присвоение начального значения требует предварительной информации о примерной локализации корня.

Функция позволяет найти как вещественные корни, так и комплексные. В случае комплексного корня начальное приближение нужно задать в виде комплексного числа.

Если после многих итераций Mathcad не находит подходящего приближения, то появится сообщение «отсутствует сходимость».

Эта ошибка может быть вызвана следующими причинами:

· уравнение не имеет корней;

· корни уравнения расположены далеко от начального приближения;

· выражение F(x) имеет разрывы между начальным приближением и корнем;

· выражение имеет комплексный корень, но начальное приближение было вещественным и наоборот.

Для изменения точности, с которой функция Root ищет корень, нужно изменить значение системной переменной TOL. Например, просле задания в документе оператора TOL:=0.00001 точность вычисления корня станет равной 0.00001.

Для нахождения корней полиномиального уравнения вида

используется функция Polyroots.

В отличие от функции Root, Polyroots не требует начального приближения и вычисляет сразу все корни, как вещественные, так и комплексные.

REDMOND

Polyroots(v),

Где V – вектор коэффициентов полинома длины N+1, n – степень полинома. Вектор V формируется следующим образом: в первый его элемент заносится значение коэффициента полинома при х0, т. е. V0, во второй элемент — значение коэффициента полинома при х1, т. е. V1 и т. д. Таким образом, вектор заполняется коэффициентами перед степенями полинома справа налево.

Функция вычисляет вектор длины N, состоящий из корней полинома.

На рисунке 2.6.1 приведены примеры вычисления корней уравнений с помощью функций Root и Polyroots.

Рисунок 2.6.1 – Примеры решения уравнений

MathCAD дает возможность решать системы уравнений и неравенств.

Наиболее распространенным методом решения уравнений в Mathcad является блочный метод. Для решения системы этим методом необходимо выполнить следующее:

A) задать начальное приближение для всех неизвестных, входящих в систему уравнений;

Б) задать ключевое слово Given, которое указывает, что далее следует система уравнений;

В) ввести уравнения и неравенства в любом порядке (использовать кнопку логического равенства на панели знаков логических операций Для набора знака «=» в уравнении);

Г) ввести любое выражение, которое включает функцию Find.

Решающим блоком называется часть документа, расположенная между ключевыми словами Given и Find.

После набора решающего блока Mathcad возвращает точное решение уравнения или системы уравнений.

Обратиться к функции Find можно несколькими способами:

Find(X1, X2,…) = — корень или корни уравнения вычисляются и выводятся в окно документа.

X := Find(x1, x2,…) – формируется переменная или вектор, содержащий вычисленные значения корней.

Сообщение об ошибке «Решение не найдено» появляется тогда, когда система не имеет решения или для уравнения, которое не имеет вещественных корней, в качестве начального приближения взято вещественное число и наоборот.

Приближенное решение уравнения или системы можно получить с помощью функции Minerr.

Если в результате поиска не может быть получено дальнейшее уточнение текущего приближения к решению, Minerr возвращает это приближение. Функция Find в этом случае возвращает сообщение об ошибке. Правила использования функции Minerr такие же, как и для функции Find. Часть документа, расположенная между ключевыми словами Given и Minerr так же носит название решающего блока.

Примеры решения систем уравнений с помощью решающего блока приведены на рисунке 2.6.2.

Для решения систем линейных уравнений можно использовать общепринятые математические методы: метод Крамера, матричный метод и т. д.

Матричный метод решения системы линейных уравнений реализован в функции Lsolve. Общий вид функции:

Lsolve(а, B)

Где А – матрица коэффициентов перед неизвестными, B – вектор свободных членов.

Матричный метод можно реализовать и с помощью обратной матрицы. Примеры решения систем линейных уравнений с помощью матричного метода приведены на рисунке 2.6.2.

Рисунок 2.6.2 – Примеры решения систем уравнений

Из рисунка 6.2 видно, что при решении системы уравнений блочным методом можно получить численные значения корней системы уравнений, без присваивания и с присваиванием их в переменные x1 и x2. При решении системы уравнений матричным методом продемонстрированы два варианта: с использованием стандартной функции Lsolve и обратной матрицы.

Как решить уравнение в mathcad

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Решение уравнений и систем уравнений в Mathcad

Решение уравнений и систем уравнений в Mathcad

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

Решение уравнений и систем уравнений в Mathcad

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

Решение уравнений и систем уравнений в Mathcad

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Решение уравнений и систем уравнений в Mathcad

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства система уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Решение уравнений и систем уравнений в Mathcad

Пример использования блока given…find для решения системы уравнений:

REDMOND

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *