Как работать в matlab

REDMOND

Введение в MATLAB

В данном плейлисте рассмотрены основные аспекты по работе в среде MATLAB.

Список видео, входящих в плейлист "Введение в MATLAB":

01 Начало работы

Базовые функции MATLAB, переменные, команды, массивы, индексация массивов, матрицы и матричные операции, синтаксис языка, построение графиков, работа с командной строкой, всплывающие подсказки, справка.

02 Среда разработки

Работа с такими инструментами, как история команд, браузер рабочего пространства и редактор переменных, сохранение и загрузка данных в рабочее пространство, а также управление окнами и панелями рабочего стола MATLAB. Подробно показан интерфейс программы.

03 Написание программ

Написание программ MATLAB, включая создание скриптов и функций.

04 Массивы и матрицы

Создание и манипуляции с массивами в MATLAB, включая доступ к элементам с использованием индексации.

05 Фундаментальные классы (типы данных)

Работа с численными, текстовыми и логическими типами данных в MATLAB.

Документация по теме "Типы данных"

06 Структуры и массивы ячеек

Использование структур и массивов ячеек в MATLAB для управления гетерогенными данными различных типов и размеров.

07 Интерактивное построение графиков

Интерактивное построение базовых графиков в среде разработки MATLAB.

Документация по теме "Графика"

08 Расширенное построение графиков: особенности и приемы

Создание графиков программным способом с использованием базовых функций для построения графиков в MATLAB.

В помощь математикам: обзор MATLAB

Обзор MATLABОбзор MATLAB

Те, кто имеет дело с высшей математикой, прекрасно знают, с какими математическими «чудовищами» иногда приходится сталкиваться. Например, на вычисление какого-нибудь гигантского тройного интеграла можно потратить настоящую уйму времени, душевных сил и не восстанавливающихся нервных клеток. Конечно, это очень интересно, бросить вызов интегралу, и взять его. Но, что делать, если вместо этого интеграл грозиться взять Вас? Или, что еще хуже, кубический трехчлен вышел из-под контроля и разбушевался? Такого и врагу не пожелаешь.

Что делать?Что делать?

Раньше вариантов было всего два: плюнуть на все и пойти гулять или вступить в многочасовую схватку с интегралом. Ну, кому многочасовую, кому многоминутную – кто как учился. Но суть не в этом. Двадцатый век и неумолимо движущийся прогресс предлагают нам третий способ, а именно позволяют взять самый сложный интеграл «по-быстрому». То же самое касается решения всевозможных уравнений, построения графиков функций в виде кубических гиперболоидов и т.д.

Для таких неординарных, но периодически случающихся среди студентов ситуаций существует мощное математическое оружие. Встречайте, кто еще не знает – пакет программ MATLAB.

Матлаб и решит уравнение, и аппроксимирует, и построит график функции. Понимаете, что это значит, друзья?

Это значит, что MATLAB – один из мощнейших на сегодняшний день пакетов обработки данных. Название расшифровывается как Matrix Laboratory. Матричная Лаборатория, если по-русски. Возможности программы покрывают практически все области математики. Так, пользуясь матлабом, Вы сможете:

  • Производить всевозможные операции над матрицами, решать линейные уравнения, работать с векторами;
  • Вычислять корни многочленов любой степени, производить операции над многочленами, дифференцировать, экстраполировать и интерполировать кривые, строить графики любых функций;
  • Проводить статистический анализ данных с использованием цифровой фильтрации, статистической регрессии;
  • Решать дифференциальные уравнения. В частных производных, линейных, нелинейных, с граничными условиями – не важно, матлаб все решит;
  • Выполнять операции целочисленной арифметики.

MATLABMATLAB

Помимо всего этого возможности MATLAB позволяют визуализировать данные вплоть до построения трехмерных графиков и создания анимированных роликов.

Наше описание матлаб, конечно, далеко не полное. Помимо предусмотренных производителем возможностей и функций существует огромное количество инструментов матлаб, написанных просто энтузиастами или другими компаниями.

MATLAB как язык программирования

М-файлМ-файл

А еще MATLAB – это язык программирования, используемый непосредственно при работе с программой. Не будем вдаваться в подробности, скажем только, что программы, написанные на языке MATLAB, бывают двух видов: функции и скрипты.

MATLAB - серьезное средство для серьезных ребятMATLAB — серьезное средство для серьезных ребят

Основной рабочий файл программы – М-файл. Это бесконечный текстовый файл, и именно в нем происходит непосредственно программирование вычислений. Кстати, пусть Вас не пугает это слово – для того, чтобы работать в MATLAB, вовсе не нужно быть профессиональным программистом.

М-файлы делятся на

  • М-сценарии. М-сценарий – самый простой тип M-файла, у которого отсутствуют входные и выходные аргументы. Данный файл используется для автоматизации многократно повторяемых вычислений.
  • M-функции. М-функции – это М-файлы, допускающие наличие входных и выходных аргументов.

Для того чтобы наглядно показать, как происходит работа в MATLAB, приведем ниже пример создания функции в матлабе. Данная функция будет вычислять среднее значение вектора.
function y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X — вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
[m,n] = size(x);
if (

((m == 1) | (n == 1)) | (m == 1 & n == 1))
error(‘Входной массив должен быть вектором’)
end
y =sum(x)/length(x); % Собственно вычисление

Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов. Так, строка определения функции average имеет вид:
function y = average(x)
Где:

  1. function — ключевое слово, определяющее М-функцию;
  2. y — выходной аргумент;
  3. average — имя функции;
  4. x — входной аргумент.

Итак, чтобы написать функцию в матлабе, необходимо помнить, что каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Безусловно, такой мощный пакет нужен не только для того, чтобы облегчить жизнь студентам. В настоящее время MATLAB, с одной стороны, очень популярен среди специалистов многих научных и инженерных отраслей. С другой стороны, возможность работы с большими матрицами делает MATLAB незаменимым инструментом финансовых аналитиков, позволяющим решить намного больше задач, чем, к примеру, известный всем Excel. Подробнее о том, как сделать презентацию на компьютере вы можете прочитать в обзорной статье.

Недостатки работы с MATLAB

MATLAB - хорошо, но тяжелоMATLAB — хорошо, но тяжело

Какие есть трудности в работе с MATLAB? Трудность, пожалуй, всего одна. Но фундаментальная. Чтобы полностью раскрыть возможности MATLAB и с легкостью решать встающие перед Вами задачи, придется попотеть и сначала разобраться с самим матлабом (как создать файл, как создать функцию и др.). А это не так просто, ибо мощность и широкие возможности требуют жертв.

При всем желании нельзя сказать, что MATLAB – простая программа. Тем не менее, надеемся, все вышеперечисленное будет достаточным аргументом для того, чтобы взяться за ее освоение.

И напоследок. Если Вы не знаете, почему все в Вашей жизни пошло так, а не иначе, спросите об этом у матлаба. Просто наберите в командной строке “why” (почему). Он ответит. Попробуйте!

Теперь вы знаете возможности Матлаб. В области образования MATLAB часто используется в преподавании численных методов и линейной алгебры. Многим студентам не обойтись без него при обработке результатов эксперимента, проведенного в ходе лабораторной работы. Для быстрого и качественного освоения основ работы с MATLAB Вы всегда можете обратиться к нашим специалистам, в любой момент готовым ответить на любой Ваш вопрос.

Цель работы: знакомство с основными командами системы MATLAB

MATLAB – это высокопроизводительный язык для технических расчетов. Он включает в себя вычисления, визуализацию и программирование в удобной среде, где задачи и решения выражаются в форме, близкой к математической. Типичное использование MATLAB – это:

MATLAB – это интерактивная система, в которой основным элементом данных является массив. Это позволяет решать различные задачи, связанные с техническими вычислениями, особенно в которых используются матрицы и вектора, в несколько раз быстрее, чем при написании программ с использованием “скалярных” языков программирования, таких как Си или Фортран .

Слово MATLAB означает матричная лаборатория ( matrix laboratory ). MATLAB был специально написан для обеспечения легкого доступа к LINPACK и EISPACK , которые представляют собой современные программные средства для матричных вычислений.

MATLAB развивался в течении нескольких лет, ориентируясь на различных пользователей. В университетской среде, он представлял собой стандартный инструмент для работы в различных областях математики, машиностроении и науки. В промышленности, MATLAB – это инструмент для высокопродуктивных исследований, разработок и анализа данных.

В MATLAB важная роль отводится специализированным группам программ, называемых toolboxes . Они очень важны для большинства пользователей MATLAB , так как позволяют изучать и применять специализированные методы. Toolboxes – это всесторонняя коллекция функций MATLAB (М-файлов), которые позволяют решать частные классы задач. Toolboxes применяются для обработки сигналов, систем контроля, нейронных сетей, нечеткой логики, вэйвлетов, моделирования и т.д.

СИСТЕМА MATLAB

Система MATLAB состоит из пяти основных частей:

Программный интерфейс. Это библиотека, которая позволяет писать программы на Си и Фортране , которые взаимодействуют с MATLAB . Она включает средства для вызова программ из MATLAB (динамическая связь), вызывая MATLAB как вычислительный инструмент и для чтения-записи МАТ-файлов.

О SIMULINK

Simulink , сопутствующая MATLAB программа, – это интерактивная система для моделирования нелинейных динамических систем. Она представляет собой среду, управляемую мышью, которая позволяет моделировать процесс путем перетаскивания блоков диаграмм на экране и их манипуляцией. Simulink работает с линейными, нелинейными, непрерывными, дискретными, многомерными системами.

Blocksets – это дополнения к Simulink , которые обеспечивают библиотеки блоков для специализированных приложений, таких как связь, обработка сигналов, энергетические системы.

Real-Time Workshop – это программа, которая позволяет генерировать С код из блоков диаграмм и запускать их на выполнение на различных системах реального времени.

МАТРИЦЫ И МАГИЧЕСКИЕ КВАДРАТЫ

Лучший способ начать работу с MATLAB — это научиться обращаться с матрицами. В MATLAB матрица – это прямоугольный массив чисел. Особое значение придается матрицам 1×1, которые являются скалярами, и матрицам, имеющим один столбец или одну строку, — векторам. MATLAB использует различные способы для хранения численных и не численных данных, однако вначале лучше всего рассматривать все данные как матрицы. MATLAB организован так, чтобы все операции в нем были как можно более естественными. В то время как другие программные языки работают с числами как элементами языка, MATLAB позволяет вам быстро и легко оперировать с целыми матрицами.

Хороший пример матрицы можно найти на гравюре времен Ренессанса художника и любителя математики Альбрехта Дюрера. Это изображение содержит много математических символов, и если хорошо присмотреться, то в верхнем правом углу можно заметить квадратную матрицу. Это матрица известна как магический квадрат и во времена Дюрера считалось, что она обладает магическими свойствами. Она и на самом деле обладает замечательными свойствами, стоящими изучения.

ВВОД МАТРИЦ

Вы можете вводить матрицы в MATLAB несколькими способами:

Начтем с введения матрицы Дюрера как списка элементов. Вы должны следовать нескольким основным условиям:

Чтобы ввести матрицу Дюрера просто напишите (рис. 1.1):

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB отобразит матрицу, которую мы ввели,

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Рис. 1.1 Пример фрагмента командного окна MATLAB

Это точно соответствует числам на гравюре. Если мы ввели матрицу, то она автоматически запоминается средой MATLAB . И мы можем к ней легко обратиться как к А. Сейчас мы имеем А в рабочем пространстве MATLAB (рис. 1.2)

Рис. 1.2 Пример фрагмента рабочего пространства MATLAB

ОПЕРАЦИИ СУММИРОВАНИЯ ЭЛЕМЕНТОВ, ТРАНСПОНИРОВАНИЯ И ДИАГОНАЛИЗАЦИИ МАТРИЦЫ

Вы возможно уже знаете, что особые свойства магического квадрата связаны с различными способами суммирования его элементов. Если вы берёте сумму элементов вдоль какой-либо строки или столбца, или вдоль какой-либо из двух главных диагоналей, вы всегда получите одно и тоже число. Давайте проверим это, используя MATLAB . Первое утверждение, которое мы проверим —

sum(A)

MATLAB выдаст ответ

ans =

34 34 34 34

Когда выходная переменная не определена, MATLAB использует переменную ans, коротко от answer – ответ, для хранения результатов вычисления. Мы подсчитали вектор-строку, содержащую сумму элементов столбцов матрицы А. Действительно, каждый столбец имеет одинаковую сумму, магическую сумму, равную 34.

А как насчет сумм в строках? MATLAB предпочитает работать со столбцами матрицы, таким образом, лучший способ получить сумму в строках – это транспонировать нашу матрицу, подсчитать сумму в столбцах, а потом транспонировать результат. Операция транспонирования обозначается апострофом или одинарной кавычкой. Она зеркально отображает матрицу относительно главной диагонали и меняет строки на столбцы. Таким образом

вызывает

ans =

16 5 9 4

3 10 6 15

2 11 7 14

13 8 12 1

вызывает результат вектор-столбец, содержащий суммы в строках

ans =

34

34

34

34

Сумму элементов на главной диагонали можно легко получить с помощью функции diag, которая выбирает эту диагональ.

diag(A)

ans =

16

10

7

1

sum(diag(A))

ans =

34

Таким образом, мы проверили, что матрица на гравюре Дюрера действительно магическая, и научились использовать некоторые матричные операции MATLAB . В последующих разделах мы продолжим использовать эту матрицу для демонстрации дополнительных возможностей MATLAB .

ИНДЕКСЫ

Элемент в строке i и столбце j матрицы А обозначается A(i,j). Например, А(4,2) – это число в четвертой строке и втором столбце. Для нашего магического квадрата А(4,2) = 15. Таким образом, можно вычислить сумму элементов в четвертом столбце матрицы А, набрав

A(1,4) + A(2,4) + A(3,4) + A(4,4)

ans =

34

Однако это не самый лучший способ суммирования отдельной строки.

Также возможно обращаться к элементам матрицы через один индекс, А(k). Это обычный способ ссылаться на строки и столбцы матрицы. Но его можно использовать только с двумерными матрицами. В этом случае массив рассматривается как длинный вектор, сформированный из столбцов исходной матрицы.

Так, для нашего магического квадрата, А(8) – это другой способ ссылаться на значение 15, хранящееся в А(4,2).

Если вы пытаетесь использовать значение элемента вне матрицы, MATLAB выдаст ошибку:

. Index exceeds matrix dimensions.

С другой стороны, если вы сохраняете значение вне матрицы, то размер матрицы увеличивается.

X(4,5) = 17

16 3 2 13 0

5 10 11 8 0

9 6 7 12 0

4 15 14 1 17

ОПЕРАТОР ДВОЕТОЧИЯ

Двоеточие, : , – это один из наиболее важных операторов MATLAB . Он проявляется в различных формах. Выражение

1:10

ans =

1 2 3 4 5 6 7 8 9 10

Для получения обратного интервала, опишем приращение. Например

100:-7:50

ans =

100 93 86 79 72 65 58 51

0:pi/4:pi

ans =

0 0.7854 1.5708 2.3562 3.1416

Индексное выражение, включая двоеточие, относится к части матрицы. A(1:k, j) – это первые к элементов j-го столбца матрицы А.

Так sum(A(4, 1:4))
вычисляет сумму четвертой строки. Но есть и лучший способ. Двоеточие, само по себе, обращается ко всем элементам в строке и столбце матрицы, а слово end к последней строке или столбцу. Так

sum(A(:,end))

вычисляет сумму элементов в последнем столбце матрицы А

ans =

34

Почему магическая сумма квадрата 4×4 равна 34? Если целые числа от 1 до 16 отсортированы в четыре группы с равными суммами, эта сумма должна быть

sum(1:16)/4

которая, конечно, равна

ans =

34

ФУНКЦИЯ MAGIC

MATLAB на самом деле обладает встроенной функцией, которая создает магический квадрат почти любого размера. Не удивительно, что эта функция называется magic.

B=magic(4)

B =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Эта матрица почти та же матрица, что и на гравюре Дюрера, и она имеет все те же магические свойства. Единственное отличие заключается в том, что два средних столбца поменялись местами. Для того чтобы преобразовать В в матрицу Дюрера
А, переставим их местами.

A=B(:,[1 3 2 4])

Это означает, что для каждой строки матрицы В элементы переписываются в порядке 1, 3, 2, 4

A =

16 3 2 13

5 10 11 8

9 6 7 12

REDMOND

4 15 14 1

Почему Дюрер переупорядочил столбцы, по сравнению с тем, что использует MATLAB ? Без сомнения, он хотел включить дату гравюры, 1514, в нижнюю часть магического квадрата.

ВЫРАЖЕНИЯ

Как и большинство других языков программирования, MATLAB предоставляет возможность использования математических выражений, но в отличие от многих из них, эти выражения в MATLAB включают матрицы. Основные составляющие выражения:

ПЕРЕМЕННЫЕ

В MATLAB нет необходимости в определении типа переменных или размерности. Когда MATLAB встречает новое имя переменной, он автоматически создает переменную и выделяет соответствующий объем памяти. Если переменная уже существует, MATLAB изменяет ее состав и если это необходимо выделяет дополнительную память. Например,

num_students = 25

создает матрицу 1×1 с именем num_students и сохраняет значение 25 в ее единственном элементе.

Имена переменных состоят из букв, цифр или символов подчеркивания. MATLAB использует только первые 31 символ имени переменной. MATLAB чувствителен к регистрам, он различает заглавные и строчные буквы. Поэтому А и а – не одна и та же переменная. Чтобы увидеть матрицу связанную с переменной, просто введите название переменной.

ЧИСЛА

MATLAB использует принятую десятичную систему счисления, с необязательной десятичной точкой и знаками плюс-минус для чисел. Научная система счисления использует букву е для определения множителя степени десяти. Мнимые числа используют i или j как суффикс.

Все числа для хранения используют формат long, определенный стандартом плавающей точки IЕЕ. Числа с плавающей точкой обладают ограниченной точностью – приблизительно 16 значащих цифр и ограниченным диапазоном -приблизительно от 10 -308 до 10 308 (Компьютер VAX использует другой формат чисел с плавающей точкой, но их точность и диапазон приблизительно те же).

ОПЕРАТОРЫ

Выражения используют обычные арифметические операции и правила старшинства.

\ левое деление(описано в разделе Матрицы и Линейная Алгебра в книге

‘ комплексно сопряженное транспонирование

() определение порядка вычисления

ФУНКЦИИ

MATLAB предоставляет большое количество элементарных математических функций, таких как abs, sqrt, exp, sin. Вычисление квадратного корня или логарифма отрицательного числа не является ошибкой: в этом случае результатом является соответствующее комплексное число. MATLAB также предоставляет и более сложные функции, включая Гамма-функцию и функции Бесселя. Большинство из этих функций имеют комплексные аргументы. Чтобы вывести список всех элементарных математических функций, наберите

help elfun

Для вывода более сложных математических и матричных функций, наберите

help specfun

help elmat

Некоторые функции, такие как sqrt и sin, – встроенные. Они являются частью MATLAB , поэтому они очень эффективны, но их вычислительные детали трудно доступны. В то время как другие функции, такие как gamma и sink, реализованы в М-файлах. Поэтому вы можете легко увидеть их код и, в случае необходимости, даже модифицировать его.

Несколько специальных функций предоставляют значения часто используемых констант.

i мнимая единица

j то же самое, что и i

eps относительная точность числа с плавающей точкой

realmin наименьшее число с плавающей точкой

realmax наибольшее число с плавающей точкой

Бесконечность появляется при делении на нуль или при выполнении математического выражения, приводящего к переполнению, т.е. к превышению realmax. Не число (NaN) генерируется при вычислении выражений типа 0/0 или Inf- Inf, которые не имеют определенного математического значения.

Имена функций не являются зарезервированными, поэтому возможно изменять их значения на новые, например

eps = 1.e-6

и далее использовать это значение в последующих вычислениях. Начальное значение может быть восстановлено следующим образом

clear eps

ВЫРАЖЕНИЯ

Вы уже познакомились с некоторыми примерами использования выражений в MATLAB. Ниже приведено еще несколько примеров с результатами.

rho = (1+sqrt(5))/2

а = abs(3+4i)

а =

5

z = sqrt(besselk(4/3,rho-i))

huge = exp(log(realmax))

toobig = pi*huge

ГЕНЕРИРОВАНИЕ МАТРИЦ

MATLAB имеет четыре функции, которые создают основные матрицы:

ones все единицы

rand равномерное распределение случайных элементов

randn нормальное распределение случайных элементов

Z = zeros(2,4)

Z =

0 0 0 0

0 0 0 0

F = 5*ones(3,3)

5 5 5

5 5 5

5 5 5

N = fix(10*rand(1,10))

N =

9 2 6 4 8 7 4 0 8 4

R = randn(4,4)

R =

-0.4326 -1.1465 0.3273 -0.5883

-1.6656 1.1909 0.1746 2.1832

0.1253 1.1892 -0.1867 -0.1364

0.2877 -0.0376 0.7258 0.1139

ЗАГРУЗКА МАТРИЦ

Команда load считывает двоичные файлы, содержащие матрицы, созданные в MATLAB ранее, или текстовые файлы, содержащие численные данные. Текстовые файлы должны быть сформированы в виде прямоугольной таблицы чисел, отделенных пробелами, с равным количеством элементов в каждой строке. Например, создадим вне MATLAB текстовой файл, содержащий 4 строки:

16.0 3.0 2.0 13.0

5.0 10.0 11.0 8.0

9.0 6.0 7.0 12.0

4.0 15.0 14.0 1.0

Сохраним этот файл под именем magik.dat. Тогда команда load magik.dat прочитает этот файл и создаст переменную magik, содержащую нашу матрицу.

ОБЪЕДИНЕНИЕ

Объединение – это процесс соединения маленьких матриц для создания больших. Фактически, вы создали вашу первую матрицу объединением её отдельных элементов. Пара квадратных скобок – это оператор объединения. Например, начнем с матрицы А (магического квадрата 4×4) и сформируем

В = [А А+32; А+48 А+16]

Результатом будет матрица 8×8, получаемая соединением четырех подматриц

16 3 2 13 48 35 34 45

5 10 11 8 37 42 43 40

9 6 7 12 41 38 39 44

4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29

53 58 59 56 21 26 27 24

57 54 55 60 25 22 23 28

52 63 62 49 20 31 30 17

Это матрица лишь наполовину является магической. Её элементы представляют собой комбинацию целых чисел от 1 до 64, а суммы в столбцах точно равны значению для магического квадрата 8×8.

sum (В)

ans =

260 260 260 260 260 260 260 260

Однако, суммы в строках этой матрицы ( sum(B’)’ ) не все одинаковы. Необходимо провести дополнительные операции, чтобы сделать эту матрицу действительно магическим квадратом 8×8.

УДАЛЕНИЕ СТРОК И СТОЛБЦОВ

Вы можете удалять строки и столбцы матрицы, используя просто пару квадратных скобок. Рассмотрим

X = А;

Теперь удалим второй столбец матрицы X.

Эта операция изменит X следующим образом

X =

16 2 13

5 11 8

9 7 12

4 14 1

Если вы удаляете один элемент матрицы, то результат уже не будет матрицей. Так выражение

результатом вычисления выдаст ошибку. Однако использование одного индекса удаляет отдельный элемент или последовательность элементов и преобразует оставшиеся элементы в вектор-строку. Так

X(2:2:10) = []

X =

16 9 2 7 13 12 1

ПЕРЕМНОЖЕНИЕ МАТРИЦ

При перемножении двух матриц используется оператор ‘*’. Например, если

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

B =

16 4 7 3

5 -7 2 9

0 8 23 65

-7 4 17 9

Тогда С = А*В даст результат

С =

180 111 385 322

74 70 444 892

90 98 440 644

132 27 397 1066

Также в системе MATLAB предусмотрена возможность поэлементного перемножения. Для этой цели используется точка перед знаком умножения. Например:

C = A.*B

C =

256 12 14 39

25 -70 22 72

0 48 161 780

-28 60 238 9

СОЗДАНИЕ М-ФАЙЛОВ

M-файлы являются обычными текстовыми файлами, которые создаются с помощью текстового редактора. Для операционной среды персонального компьютера система MATLAB поддерживает специальный встроенный редактор/отладчик, хотя можно использовать и любой другой текстовый редактор с ASCII-кодами.

Открыть редактор можно двумя способами:

М-функции являются M-файлами, которые допускают наличие входных и выходных аргументов. Они работают с переменными в пределах собственной рабочей области, отличной от рабочей области системы MATLAB .

Функция average – это достаточно простой M-файл, который вычисляет среднее значение элементов вектора:

function y = average (x)

% AVERAGE Среднее значение элементов вектора.

% AVERAGE(X), где X – вектор. Вычисляет среднее значение элементов

% Если входной аргумент не является вектором, генерируется ошибка.

((m == 1) | (n == 1)) | (m == 1 & n == 1))

error(‘Входной массив должен быть вектором’)

y =sum(x)/length(x); % Собственно вычисление

Попробуйте ввести эти команды в M-файл, именуемый average.m . Функция average допускает единственный входной и единственный выходной аргументы. Для того чтобы вызвать функцию average , надо ввести следующие операторы:

z = 1:99;

average(z)

ans = 50

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИГНАЛОВ

Среднее значение сигнала (его постоянная составляющая) определяется по следующей формуле:

(1.1)

Среднеквадратичное отклонение (СКО, девиация, переменная составляющая) сигнала определяется по следующей формуле:

(1.2)

Значение статистической ошибки принимаемого сигнала определяется по следующей формуле:

(1.3)

Функция нормального распределения описывается следующей формулой:

(1.4)

REDMOND

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *