Как построить поверхность в mathcad

REDMOND

Построение поверхностей второго порядка в среде Mathcad

Построение графика поверхности в системе Mathcad может осуществляться несколькими способами.

1 Построение поверхностей по матрице аппликат их точек.

Поскольку элементы матрицы М – индексированные переменные с целочисленными ин­дексами, то перед созданием матрицы требуется задать индексы в виде ранжированных пе­ременных с целочисленными значениями, а затем из них сформировать сетку значений х и у – координат для аппликат z(x,y). Значения х и у могут быть любыми действительными числами.

После указанных выше определений вводится шаблон графика (либо с помощью подменю меню Вставка, либо с помощью панели Graph). Левый верхний угол шаблона помещается в место расположения курсора. Шаблон содержит единственное место ввода – темный прямоугольник у левого нижнего угла основного шаблона. В него надо занести имя мат­рицы аппликат поверхности. После этого надо установить указатель мыши в стороне от графического блока и щелкнуть левой кнопкой.

Следует заметить, так как график строится на основе матрицы, содержащей только координаты высот фигуры, то истинные масштабы по осям абсцисс и ординат неизвестны и на рисунках не проставляются. Однако можно выводить порядковые номера элементов матриц в заданном направлении. Необходимо следить за тем, как сформировать векторы Х и У, чтобы поверхность выглядела естественно и была видна нужная часть поверхности.

2 Построение трехмерных графиков без задания матрицы.

В данном случае для построения достаточно задать функцию переменных х и у. В результате построение графиков поверхностей выполняется также просто, как и построение двухмерных графиков. Недостат­ками такого построения являются неопределенность в масштабировании и то, что не все поверхности второго порядка можно построить таким образом.

Форматирование трехмерных графиков.

Принцип форматирования трехмерных графиков такой же, как и форматирования двухмерных графиков. Отличие состоит лишь в большем количестве параметров форматирования.

Задание 1. Построить поверхность по матрице аппликат ее точек (рисунок 30).

Задание 2. Построить поверхность без задания матрицы (рисунок 31).

Рисунок 30

Рисунок 31

Уравнение поверхности не всегда задается в явном виде. Для того чтобы построить поверхность заданную неявно необходимо сначала уравнение данной поверхности разрешить относительно какой-либо переменной, а затем строить поверхности по полученным уравнениям.

Задание 3.Построить поверхность, заданную уравнением (рисунок 32).

Задание 4. Построить поверхность, заданную уравнением (рисунок 33).

Возможности системы Mathcad позволяют строить пересекающиеся поверхности в одной системе координат.

Задание 5.Построить поверхности , (рисунок 34).

В пакете Mathcad также возможно построение поверхностей, заданных в параметрической форме. Примеры таких построений приведены на рисунках 36 и 37.

Построение поверхностей в Mathcad

Быстрое построение является наиболее легким способом построения поверхностей. Для этого необходимо:

1. На лист Mathcad ввести формулу z(x,y):=…;

2. Выбрать команду главного меню «Вставка», «График», выбрать вид графика «поверхность» на панели инструментов «Графики».

3. В шаблон трехмерного графика ввести имя функции без указания аргументов.

Построение поверхностей по матрице аппликат.

Самый «правильный» способ построения графика поверхности, заданной функцией от двух переменных z = f ( x , y ), является заполнение матрицы значениями этой функции. При этом строки и столбцы матрицы интерпретируются как абсциссы и ординаты.

Определение функции от двух переменных z(x,y):=cos(x* y )

Число линий для построения графика и масштаба N :=40 M :=40

Определение индексов i:=0..N j:=0..N

Определение массивов абсцисс и ординат x i := yj :=

В шаблон трехмерного графика вводим название массива аппликат:

Построение с помощью функции CreateMesh .

Функция CreateMesh относится к категории Vector and matrix (Векторы и матрицы), так как результатом работы функции будет матрица координат.

Формат вызова функции:

CreateMesh ( F , x 1, x 2, y 1, y 2, xgrid , ygrid , mesh ).

Параметры функции CreateMesh :

Mesh – количество линий в сетке функции;

F – вид функции (может быть или формула, или трёхмерный вектор, задающий каждую координату в параметрической форме, или три отдельные функции, задающие координаты в параметрическом виде);

— x 1 – нижняя граница переменной x ;

— x 2 – верхняя граница переменной x ;

— y 1 – нижняя граница переменной y ;

— y 2 – верхняя граница переменной y ;

— xgrid – количество точек переменной х;

— ygrid – количество точек переменной y .

В одной системе координат можно построить несколько поверхностей, для этого достаточно определить их, а затем в шаблон графика ввести их имена без аргументов через запятую:

Построение одного и того же графика в декартовой, цилиндрической и сферической системах координат.

Пусть задана какая-нибудь функция, например z(x,y)=const. В различных системах координат эта функция имеет различные графики. В декартовой системе координат это плоскость, параллельная плоскости Оху, в цилиндрической – прямой круговой цилиндр с основанием радиуса const , в сферической – шар радиуса const. Для изменения системы координат, надо по шаблону графика щелкнуть правой кнопкой мыши, в появившемся перечне выбрать «Свойства», затем «Данные QuickPlot» и указать нужную систему координат. Пример:

Построение многогранников

Для построения многогранников в Mathcad есть функция Polyhedron. Её можно использовать двумя способами:

1) по имени, тогда обращение к функции будет Polyhedron(“имя многогранника”);

2) по коду, тогда обращение к функции будет Polyhedron(“#номер многогранника”).

Построение поверхностей вращения.

Для построения поверхностей вращения в Mathcad удобно использовать функцию CreateMesh.

Параметры функции CreateMesh:

— x1, y1,z1 – матрицы значений для каждой координаты;

— -5 – нижняя граница переменной u;

— 5 – верхняя граница переменной u;

— 0 – нижняя граница переменной v;

— 2π – верхняя граница переменной v;

— 30 – количество линий в сетке графика.

Параметрические уравнения для поворота вокруг оси Ох:

z 1( x , φ ):= y ( x ) . sin ( φ )

Параметрические уравнения для поворота вокруг оси Oy :

х2( x , φ ):= x . cos ( φ )

z 2( x , φ ):= x . sin ( φ )

Пример: рассмотрим гиперболу y 2 – x 2 = 1. При вращении этой гиперболы вокруг оси Ох получается однополостный гиперболоид, при вращении вокруг оси Оу – двуполостный гиперболоид. Построим эти поверхности вращения:

Построение пространственных линий.

Линия в пространстве, рассматриваемая как след движущейся точки, представляется системой трёх уравнений: x = x(t); y = y(t); z = z(t), выражающих координаты точки t. Эти уравнения называются параметрическими уравнениями пространственной линии. Для построения пространственных линий в Mathcad существует функция CreateSpace .

REDMOND

Функция CreateSpace относится к категории Vector and matrix (Векторы и матрицы), так как результатом работы функции будет матрица координат. Работает аналогично CreateMesh. Главное отличие в том, что параметрические уравнения должны быть функциями одной переменной, а не двух, как в CreateMesh. Вызов функции: CreateSpace(F, t1, t2, tgrid). Параметры функции:

— F – вектор параметрических уравнений координат;

— t1 – нижняя граница переменной;

— t2 – верхняя граница переменной;

— tgrid – число линий сетки; не обязательный параметр; чем больше этот параметр, тем более гладкая получается линия; если он не достаточно велик, линия получается с изломами.

Список используемых источников

1. Бидасюк, Ю. М. MathsoftMathCAD 11. Самоучитель / Ю.М. Бидасюк. – СПб. : Диалектика, 2004. – 224 с.

2. Бутенков, С.А. Методические указания к использованию системы MathCad в практических занятиях по курсу высшей математики/ C. А Бутенков. – СПб. : Таганрог: ТРТУ, 1995. – 450 с.

3. Акишин, Б. А. Прикладные математические пакеты. Часть 1. MathCAD / Б. А. Акишин, Н. Х. Эркенов. – СПб. : РадиоСофт, 2009. – 132 с.

4. Визуальная среда математического моделирования MathCAD [Электронный ресурс]. – Режим доступа :http://bourabai.ru/einf/mathcad.

5. Графика в системе MathCAD [Электронный ресурс]. – Режим доступа :http://detc.ls.urfu.ru/assets/amath0021/l3.htm#l3.1.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Новая папка / КПМО-10_стационар / Лаб4

Создание поверхностей в MathCAD выполняется быстро и просто, так как пакет обладает возможностями построения трехмерных графиков различного типа.

Шаблон для создания трехмерного графика — Insert\Graph\Surface Plot, или кнопка на панели инструментов Graph.

1. Если вам надо только посмотреть общий вид поверхности, то MathCAD предоставляет возможность быстрого построения подобных графиков. Для этого достаточно определить функцию f(x,y). В появившейся графической области под осями на месте шаблона для ввода надо указать имя (без аргументов) функции. MathCAD автоматически построит график поверхности. Независимые переменные x и y принимают значения из промежутка [-5,5].

При необходимости этот промежуток может быть уменьшен или увеличен. Для этого необходимо выделить график и воспользоваться командой Format -> Graph -> 3D Plot или щелкнуть ПРАВОЙ кнопкой мыши по выделенному графику и в контекстном меню выбрать команду Format. В появившемся окне 3-D Plot Format на вкладке QuickPlot Data можно установить другие параметры изменения независимых переменных x и y.

2. Для построения графика поверхности в определенной области изменения независимых переменных или с конкретным шагом их изменения необходимо сначала задать узловые точки xi и yj, в которых будут определяться значения функции. После (а можно и до) этого надо определить функцию f(x,y), график которой хотите построить. После этого необходимо сформировать матрицу значений функции в виде: Ai,j=f(xi,yj).

Теперь после выполнения команды Insert -> Graph -> Surface Plot в появившейся графической области достаточно ввести имя матрицы (без индексов).

Если вы хотите, чтобы узловые точки были расположены через равные промежутки, воспользуйтесь формулами, изображенными на рисунке.

3. Для построения графика линий уровня данной функции необходимо поступать также как это было описано выше, только вместо команды (Поверхности) следует выбрать команду Contour Plot (Контурный). Аналогично, при помощи команды 3D Bar Plot (3D Диаграммы) можно построить трехмерный столбчатый график данной функции, при помощи команды 3D Scatter Plot (3D Точечный) — трехмерный точечный график, а при помощи команды 3D Patch Plot (3D Лоскутный) — трехмерный график поверхности в виде несвязанных квадратных площадок — плоскостей уровня для каждой точки данных, параллельных плоскости X-Y.

Построение графика поверхности, заданной параметрически.

4. Если поверхность задана параметрически, это означает, что все три координаты — x и y и z — заданы как функции от двух параметров u и v. Сначала необходимо задать векторы значений параметров ui и vj. Затем необходимо определить матрицы значений функций координат x(u,v), y(u,v) и y(u,v).

После выбора команды Surface Plot в MathCAD документе появится графическая область. В свободной ячейке внизу области надо указать В СКОБКАХ имена (без аргументов и индексов) трех матриц — x,y,z.

5. "Параметрический" эллипсоид

6. Эллипсоид, склеенный из двух половинок.

У эллипсоида два недостатка – внешний и внутренний:

— внешний недостаток – на графике видно место «склейки» двух поверхностей, образующих эллипсоид

— внутренний недостаток – данную методику не всегда удается перенести на замкнутую поверхность иной формы.

7. «Точечный» эллипсоид

На рисунке 3 показана совокупность точек с координатами X, Y и Z, которые оказались внутри эллипсоида. Остальные точки «упали на пол» – их Z-координата равна минус 2.

8. «Объемная» лемниската Бернулли

Лишние точки не упали на «на пол», а «ушли в небо»: их z-координата равна 10, а график отформатирован так (z = -1…+1), что точек не видно.

Форматирование трехмерных графиков.

Если вас не устраивает внешний вид созданного трехмерного графика, вы можете изменитьего, выполнив команду Format -> Graph -> 3D Plot или выполнив двойной щелчок мышкой на графической области. В результате на экране появится диалоговое окно 3-D Plot Format, позволяющее изменять параметры отображения графика. Мы рассмотрим здесь основные опции. Разобраться во всех тонкостях управлением видом графика вы можете самостоятельно, построив график и поэкспериментировав, выбирая те или иные опции.

Диалоговое окно 3-D Plot Format содержит несколько вкладок. Некоторые из них мы рассмотрим более подробно, а для других — опишем лишь их функциональное назначение.

На вкладке General (Общие свойства) вы можете:

— в области View задать направление взгляда наблюдателя на трехмерный график. Значение в поле Rotation определяет угол поворота вокруг оси Z в плоскости X-Y. Значение в поле Tilt задает угол наклона линии взгляда к плоскости X-Y. Поле Zoom позволяет увеличить (уменьшить) графическое изображение в число раз, равное цифре, указанной в поле.

— в области Axes Style (Стиль оси) задать вид осей, выбрав селекторную кнопку Perimetr (Периметр) или Corner (Угол). В первом случае оси всегда находятся на переднем плане. При выборе кнопки Corner точка пересечения осей Ox и Oy задается элементом A0,0матрицы A.

— в области Frames опция Show box (Каркас) предназначена для отображения вокруг графика куба с прозрачными гранями, а опция Show border (Границы) позволяет заключить график в прямоугольную рамку.

— в области Plot 1 (Plot 2. ) Display as (График/ несколько графиков Отобразить как) — имеются селекторные кнопки для представления графика в друих видах (контурный, точечный, векторное поле и др.)

Элементы вкладки Axes (Ось) позволяют изменять внешний вид осей координат.

Посредством опций области Grids (Сетки) можно отобразить на графике линии, описываемые уравнениями x,y,z= const.

Если установлены опции Show Numbers (Нумерация), отображаются метки на осях и подписи к ним.

При этом рядом с осями Ox и Oy указываются не значения узловых точек xi, yj, а значения индексов i и j, в то время как ось Oz размечается в соответствии с промежутком, которому принадлежат элементы матрицы значений Ai,j.

Если установлена опция Auto Grid (Автосетка), программа самостоятельно задает расстояние между соседними отметками на осях. Вы можете сами указать число линий сетки, если отключите указанную опцию.

Если установлена опция Auto Scale (Авошкала) , то MathCAD сам определяет границы построения графика и масштабы по осям. Можно отключить данную опцию и для каждой оси самостоятельно задать пределы изменения переменных в полях Minimum Value(Минимум) и Maximum Value (Максимум).

Вкладка Appearance (Внешний вид) позволяет изменять для каждого графика вид и цвет заливки поверхности (область Fill Options); вид, цвет и толщину дополнительных линий на графике (область Line Options); наносить на график точки данных (опция Draw Points области Point Options), менять их вид, размер и цвет.

Вкладка Lighting (Освещение) при включении опции Enable Lighting (Наличие подсветки) позволяет выбрать цветовую схему для освещения, "установить" несколько источников света, выбрав для них цвет освещения и определив его направление.

Вкладка Backplanes (Задние плоскости) позволяет изменить внешний вид плоскостей, ограничивающих область построения: цвет, нанесение сетки, определение ее цвета и толщины, прорисовка границ плоскостей.

На вкладке Special (Специальная) можно изменять параметры построения, специфичные для различных типов графиков.

Вкладка Advansed позволяет установить параметры печати и изменить цветовую схему для окрашивания поверхности нрафика, а также указать направление смены окраски (вдоль оси Ox, Oy или Oz). Включение опции Enable Fog (Наличие Тумана) делает график нечетким, слегка размытым (полупрозрачным). При включении опции Perspective (Перспектива) появляется возможность указать в соответствующем поле расстояние до наблюдателя.

Вкладка Quick Plot Data обсуждалась ранее в начале раздела.

Кривая в пространстве.

9. Трехмерные точечные графики можно использовать для построения изображения пространственных кривых. Пространственные кривые задаются, как правило, в виде (x(t),y(t),z(t)), где t представляет собой непрерывный действительный параметр.

Поскольку при построении техмерной точечной диаграммы MathCAD позволяет отображать на графике только отдельные точки и соединяющие их линии, необходимо сначаоа определить три вектора координат — xi, yi, zi.

Пространственная кривая создается командой Insert3D -> Graph ->Scatter Plot. Можно использовать наборную панель Graph, выбрав соответствующую пиктограмму. Для соединения точек необходимо на вкладке Appearance окна форматирования графиков указать опцию Line.

Векторные и градиентные поля.

10. Команда Insert -> Graph -> Vector Field Plot (Поле векторов) служит для представления двумерных векторных полей v=(vx, vy).

При этом векторное поле необходимо вначале определить как вектор-функцию двух координат — x и y. Затем задаются векторы значений узловых точек x и y. При помощи этих векторов компоненты векторного поля vx(x,y) и vy(x,y) генерируются в виде матриц значений vxi, j и vyi, j.

11. Подобным образом можно построить градиентное поле скалярной функции f(x,y). Градиентное поле для функции двух переменных представляет собой двумерное векторное поле. Как и в остальных случаях, внешний вид изображения векторного поля можно легко изменить, выполнив двойной щелчок в области графика и изменив требуемые опции в открывшемся диалоговом окне 3-D Plot Format.

12. Интересные объемные фигуры можно получит, вращая некоторую кривую вокруг той или иной оси. Построение этих фигур вращения сродни параметрически заданным поверхностям.

При этом необходимо обеспечить пересчет координат точек фигуры по известным из геометрии формулам. В MathCAD встроена функция CreateMesh, с помощью которой можно построить параметрически заданные поверхности.

REDMOND

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *