Сколько шаговых двигателей можно подключить к arduino

Управление несколькими шаговыми двигателями Nema 17 одновременно или NemaStepper

Я думаю что вы, если работали с arduino+nema 17, знаете, что запустить несколько двигателей одновременно бывает очень затруднительно.

Есть разные способы решения этой проблемы, самый простой, пожалуй — использование библиотеки NemaStepper. Библиотека упрощает данную задачу во много раз, главное преимущество — она не останавливает выполнение программы. Устанавливается она также, как и все остальные библиотеки. Распространяется по MIT лицензии.

Ну что, давайте приступим. И начнем мы с подключения.

Мы будем использовать Simple Nema 17 с алиэкспресса за 500 рублей, драйвер L298N и arduino uno. Вот они:

  • В примере я буду показывать четыре подключенных драйвера к ардуине, хотя буду использовать только один.
  • В интернете есть много туториалов по подключению Nema 17, поэтому я не буду подробно расписывать это здесь.

Библиотека является объектно — ориентированной. Давайте рассмотрим пример включения одного мотора:

О всех методах библиотеки можно узнать из файлов исходного кода библиотеки (в шапке библиотеки есть описание).

*Подробнее о коде в примере.

А теперь переходим к примеру.

В библиотеке есть встроенный пример (на данный момент он там один), который позволяет управлять сразу тремя моторами с Serial.

Данный пример принимает на порт команды, указанные ниже.

Давайте его разберем.

Начнем с шапки — подключения библиотек:

Далее объявляются три мотора, со следующими параметрами:

1. Первый пин
2. Второй пин
3. Третий пин
4. Четвертый пин
5. Количество шагов за оборот — у большинства моторов Nema 17 это 200.
6. Стартовая скорость
7. Значение указывающее, нужно ли удерживать вал после остановки (при true драйверы превращаются в барбекю)

Далее инициализация порта:

Затем, ВАЖНО! В главном цикле нужно обновлять положение двигателей командой Step()

Далее следует подпрограмма, которая получает данные с порта, включает/выключает моторы, задает скорость, тормоза, вращение.

И так, давайте попробуем загрузить ее в плату.

Тогда заходим в монитор порта и вводим команды из кода.
Каждая команда заканчивается символом /.
Первые три символа — название команды.
То, что между названием и / — параметры.
Давайте включим моторы командой «EMS/» (Enable MotorS).
Затем укажем мотору 1 скорость 60 командой «SS160/» (Set Speed), где 60 — скорость.
И наконец, включим первый мотор командой «MV1100/», (MoVe) где 100 — количество оборотов.
Все работает. Ура.

Тоже самое с остальными моторами.

Ну и где взять библиотеку.

Библиотеку можно скачать, отблагодарив создателя, по ссылке, указав ей реальную цену:

Спасибо за прочтение, надеюсь вам помогла моя статья.

Когда я искал решение моей проблемы, единственной подходящей библиотекой оказалась она.

Шаговые двигатели и моторы Ардуино 28BYJ-48 с драйвером ULN2003

В этой статье мы поговорим о шаговых двигателях в проектах Ардуино на примере очень популярной модели 28BYJ-48. Так же как и сервоприводы, шаговые моторы являются крайне важным элементом автоматизированных систем и робототехники. Их можно найти во многих устройствах рядом: от CD-привода до 3D-принтера или робота-манипулятора. В этой статье вы найдете описание схемы работы шаговых двигателей, пример подключения к Arduino с помощью драйверов на базе ULN2003 и примеры скетчей с использованием стандартной библиотеки Stepper.

Шаговый двигатель – принцип работы

Схема шагового двигателя

Шаговый двигатель – это мотор, перемещающий свой вал в зависимости от заданных в программе микроконтроллера шагов и направления. Подобные устройства чаще всего используются в робототехнике, принтерах, манипуляторах, различных станках и прочих электронных приборах. Большим преимуществом шаговых двигателей над двигателями постоянного вращения является обеспечение точного углового позиционирования ротора. Также в шаговых двигателях имеется возможность быстрого старта, остановки, реверса.

Шаговый двигатель обеспечивает вращения ротора на заданный угол при соответствующем управляющем сигнале. Благодаря этому можно контролировать положение узлов механизмов и выходить в заданную позицию. Работа двигателя осуществляется следующим образом – в центральном вале имеется ряд магнитов и несколько катушек. При подаче питания создается магнитное поле, которое воздействует на магниты и заставляет вал вращаться. Такие параметры как угол поворота (шаги), направление движения задаются в программе для микроконтроллера.

Основные виды шаговых моторов:

  • Двигатели с переменными магнитами (применяются довольно редко);
  • Двигатели с постоянными магнитами;
  • Гибридные двигатели (более сложные в изготовлении, стоят дороже, но являются самым распространенным видом шаговых двигателей).

Где купить шаговый двигатель

Самые простые двигатели Варианты на сайте AliExpress:

Драйвер для управления шаговым двигателем

Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Для управления биполярным шаговым двигателем чаще всего используется драйверы L298N и ULN2003.

Работа двигателя в биполярном режиме имеет несколько преимуществ:

  • Увеличение крутящего момента на 40% по сравнению с униполярными двигателями;
  • Возможность применения двигателей с любой конфигурацией фазной обмотки.

Но существенным минусов в биполярном режиме является сложность самого драйвера. Драйвер униполярного привода требует всего 4 транзисторных ключа, для обеспечения работы драйвера биполярного привода требуется более сложная схема. С каждой обмоткой отдельно нужно проводить различные действия – подключение к источнику питания, отключение. Для такой коммутации используется схема-мост с четырьмя ключами.

Драйвер шагового двигателя на базе L298N

Этот мостовой драйвер управляет двигателем с током до 2 А и питанием до 46В. Модуль на основе драйвера L298N состоит из микросхемы L298N, системы охлаждения, клеммных колодок, разъемов для подключения сигналов, стабилизатора напряжения и защитных диодов.

Драйвер двигателя L298N

Драйвер шагового двигателя ULN2003

Описание драйвера шаговых двигателей UNL2003

Шаговые двигателями с модулями драйверов на базе ULN2003 – частые гости в мастерских Ардуино благодаря своей дешевизне и доступности. Как правило, за это приходится платить не очень высокой надежностью и точностью.

Другие драйвера

Существует другой вид драйверов – STEP/DIR драйверы. Это аппаратные модули, которые работают по протоколу STEP/DIR для связи с микроконтроллером. STEP/DIR драйверы расширяют возможности:

  • Они позволяют стабилизировать фазные токи;
  • Возможность установки микрошагового режима;
  • Обеспечение защиты ключа от замыкания;
  • Защита от перегрева;
  • Оптоизоляция сигнала управления, высокая защищенность от помех.

В STEP/DIR драйверах используется 3 сигнала:

  • STEP – импульс, который инициирует поворот на шаг/часть шага в зависимости от режима. От частоты следования импульсов будет определяться скорость вращения двигателя.
  • DIR – сигнал, который задает направление вращения. Обычно при подаче высокого сигнала производится вращение по часовой стрелке. Этот тип сигнала формируется перед импульсом STEP.
  • ENABLE – разрешение/запрет работы драйвера. С помощью этого сигнала можно остановить работу двигателя в режиме без тока удержания.

Одним из самых недорогих STEP/DIR драйверов является модуль TB6560-V2. Этот драйвер обеспечивает все необходимые функции и режимы.

Подключение шагового двигателя к Ардуино

Подключение будет рассмотрено на примере униполярного двигателя 28BYj-48 и драйверов L298 и ULN2003. В качестве платы будет использоваться Arduino Uno.

Подключение шагового двигателя к Ардуино

Еще один вариант схемы с использованием L298:

Подключение шагового двигателя к Ардуино на базе L298

Схема подключения на базе ULN2003 изображена на рисунке ниже. Управляющие выходы с драйвера IN1-IN4 подключаются к любым цифровым контактам на Ардуино. В данном случае используются цифровые контакты 8-11. Питание подключается к 5В. Также для двигателя желательно использовать отдельный источник питания, чтобы не перегрелась плата Ардуино.

Подключение шагового двигателя

Принципиальная схема подключения.

Принципиальная схема подключения шагового двигателя

Еще одна схема подключения биполярного шагового двигателя Nema17 через драйвер L298 выглядит следующим образом.

Подключение биполярного двигателя

Обзор основных моделей шаговых двигателей для ардуино

Nema 17 – биполярный шаговый двигатель, который чаще всего используется в 3D принтерах и ЧПУ станках. Серия 170хHSхххА мотора является универсальной.

Nema-17

Основные характеристики двигателя:

  • Угловой шаг 1,8°, то есть на 1 оборот приходится 200 шагов;
  • Двигатель – двухфазный;
  • Рабочие температуры от -20С до 85С;
  • Номинальный ток 1,7А;
  • Момент удержания 2,8 кг х см;
  • Оснащен фланцем 42 мм для легкого и качественного монтажа;
  • Высокий крутящий момент – 5,5 кг х см.

28BYJ-48 – униполярный шаговый двигатель. Используется в небольших проектах роботов, сервоприводных устройствах, радиоуправляемых приборах.

28BYJ-48

  • Номинальное питание – 5В;
  • 4-х фазный двигатель, 5 проводов;
  • Число шагов: 64;
  • Угол шага 5,625°;
  • Скорость вращения: 15 оборотов в секунду
  • Крутящий момент 450 г/сантиметр;
  • Сопротивление постоянного тока 50Ω ± 7% (25 ℃).

Описание библиотеки для работы с шаговым двигателем

В среде разработки Ардуино IDE существует стандартная библиотека Strepper.h для написания программ шаговых двигателей. Основные функции в этой библиотеке:

  • Stepper(количество шагов, номера контактов). Эта функция создает объект Stepper, которая соответствует подключенному к плате Ардуино двигателю. Аргумент – контакты на плате, к которым подключается двигатель, и количество шагов, которые совершаются для полного оборота вокруг своей оси. Информацию о количестве шагов можно посмотреть в документации к мотору. Вместо количества шагов может быть указан угол, который составляет один шаг. Для определения числа шагов, нужно разделить 360 градусов на это число.
  • Set Speed(long rpms) – функция, в которой указывается скорость вращения. Аргументом является положительное целое число, в котором указано количество оборотов в минуту. Задается после функции Step().
  • Step(Steps) –поворот на указанное количество шагов. Аргументом может быть либо положительное число – поворот двигателя по часовой стрелке, либо отрицательное – против часовой стрелки.

Пример скетча для управления

В наборе примеров библиотеки Stepper.h существует программа stepper_oneRevolution, в которой задаются все параметры для шагового двигателя – количество шагов, скорость, поворот.

Заключение

В этой статье мы с вами узнали, что такое шаговый двигатель, как можно его подключить к ардуино, что такое драйвер шагового двигателя. Мы также рассмотрели пример написания скетча, использующего встроенную библиотеку Stepper. Как видим, ничего особенно сложного в работе с шаговыми моторами нет и мы рекомендуем вам обязательно поэкспериментировать самостоятельно и попробовать включить его в своих проектах Arduino.

Управление шаговым двигателем с помощью Arduino и драйвера A4988

Если вы планируете создать свой собственный 3D-принтер или станок с ЧПУ, вам нужно будет управлять несколькими шаговыми двигателями. Если использовать для этого только Arduino, то большая часть скетча будет занята кодом управления шаговыми двигателями и не останется много места для чего-то еще.

Данную проблему можно решить, использовав специальный автономный драйвер шагового двигателя — A4988 .

Модуль A4988 может контролировать как скорость, так и направление вращения биполярного шагового двигателя, такого как NEMA 17, использую всего два вывода контроллера.

Вы знаете, как работают шаговые двигатели?

Шаговые двигатели используют зубчатое колесо и электромагниты (катушки), позволяющие вращать ось по одному шагу за раз.

  • Последовательность импульсов определяет направление вращения двигателя.
  • Частота импульсов определяет скорость двигателя.
  • Количество импульсов определяет угол поворота.

Микросхема драйвера шагового двигателя A4988

Модуль собран на чипе A4988. Не смотря на свой малый размер (всего 0,8 ″ × 0,6 ″), но обладает хорошими характеристиками.

Драйвер шагового двигателя A4988 имеет высокую выходную мощность (до 35 В и 2 А) и позволяет управлять одним биполярным шаговым двигателем с выходным током до 2 А на катушку, например NEMA 17.

Для удобства работы драйвер имеет встроенный транслятор. Использование транслятора позволило уменьшить количество управляющих контактов до 2, один для управления шагами, а другой для управления направлением вращения.

Драйвер предлагает 5 различных разрешений шага, а именно:

  • полный шаг
  • 1/2 шага
  • 1/4 шага
  • 1/8 шага
  • 1/16 шага

Распиновка драйвера A4988

Драйвер A4988 имеет всего 16 контактов, которые связывают его с внешним миром. Распиновка у A4988 следующая:

распиновка модуля A4988

Давайте ознакомимся со всеми контактами по очереди.

Выводы питания

На самом деле A4988 требует подключения двух источников питания.

Подключение питания к A4988

VDD и GND используется для управления внутренней логической схемой. Напряжение питания должно находиться в пределах от 3 до 5,5 В.

Vmot и GND для обеспечения питания шагового двигателя. Тут напряжение в пределах от 8 до 35 В.

Согласно datasheet, для питания двигателя требуется соответствующий разделительный конденсатор рядом с платой, способный выдерживать ток 4 А.

Предупреждение:

Этот драйвер имеет на плате керамические конденсаторы с низким ESR , что делает его уязвимым для скачков напряжения. В некоторых случаях эти выбросы могут превышать 35 В (максимальное номинальное напряжение A4988), и это может потенциально необратимо повредить плату и даже двигатель.

Один из способов защитить драйвер от таких скачков — подключить электролитический конденсатор емкостью 100 мкФ (или как минимум 47 мкФ) к контактам источника питания двигателя.

Выводы выбора микрошага

Драйвер A4988 допускает использование режима микрошага. Это достигается за счет подачи питания на катушки с промежуточными уровнями тока.

Выводы выбора микрошага

Например, если вы решите управлять шаговым двигателем NEMA 17 с шагом 1,8 градуса (200 шагов на оборот) в режиме 1/4 шага, то двигатель будет выдавать 800 микрошагов на оборот.

Драйвер A4988 имеет три вывода селектора размера шага (разрешения), а именно: MS1, MS2 и MS3. Установив соответствующие логические уровни на эти контакты, мы можем настроить двигатели на одно из пяти ступенчатых разрешений.

Выводы выбора микрошага

По умолчанию эти три контакта подтянуты к земле внутренним резисторам. Если мы оставим эти выводы не подключенными, то двигатель будет работать в режиме полного шага.

Выводы управления

Драйвер A4988 имеет два управляющих входа, а именно: STEP и DIR.

Выводы управления A4988

STEP — управляет микрошагом мотора. Каждый высокий импульс, отправляемый на этот вывод, приводит двигатель в действие на количество микрошагов, заданное выводами Microstep Selection (MS1, MS2 и MS3). Чем быстрее импульсы, тем быстрее будет вращаться двигатель.

DIR — управляет направлением вращения двигателя. Если на него подать высокий уровень, то двигатель будет вращается по часовой стрелке, а если низкий — против часовой стрелки.

Если вы просто хотите, чтобы двигатель вращался только в одном направлении, то вы можете соединить вывод DIR непосредственно с VCC или GND соответственно.

Выводы STEP и DIR не подтянуты внутренними резисторами, поэтому вы не должны оставлять их не подключенными.

Выводы управления питанием A4988

A4988 имеет три различных вывода для управления состоянием питания, а именно. EN, RST и SLP.

Выводы управления питанием A4988

EN — вывод включения (0)/ выключения (1) драйвера A4988. По умолчанию на этом выводе установлен низкий уровень, поэтому драйвер всегда включен.

SLP — подача на данный вывод сигнала низкого уровня переводит драйвер в спящий режим, сводя к минимуму потребление энергии. Вы можете использовать это для экономии энергии.

RST — при подаче сигнала низкого уровня все входные данные STEP игнорируются, до тех пор пока не будет установлен высокий уровень. Низкий уровень также сбрасывает драйвер, устанавливая внутренний транслятор в предопределенное состояние Home. Исходное состояние — это в основном начальное положение, с которого запускается двигатель, и оно различается в зависимости от разрешения микрошага.

Если вам не нужно использовать вывод RST, вы можете подключить его к соседнему контакту SLP / SLEEP, чтобы вывести его на высокий уровень и включить драйвер.

Выводы для подключения шагового двигателя

Выходные контакты: 1B, 1A, 2A и 2B.

выходные контакты

К этим выводам можно подключить любой биполярный шаговый двигатель с напряжением питания от 8 до 35 В.

Каждый выходной контакт модуля может обеспечить ток до 2 А. Однако величина тока, подаваемого на двигатель, зависит от источника питания системы, системы охлаждения и настройки ограничения тока.

Система охлаждения — радиатор

Чрезмерное рассеивание мощности микросхемы драйвера A4988 приводит к повышению температуры, которая может выйти за пределы возможностей микросхемы, что, вероятно, приведет к ее повреждению.

Даже если микросхема драйвера A4988 имеет максимальный номинальный ток 2 А на катушку, микросхема может подавать только около 1 А на катушку без перегрева.

Для достижения более 1 А на катушку требуется радиатор или другой метод охлаждения.

Система охлаждения - радиатор

Драйвер A4988 обычно поставляется с радиатором. Желательно установить его перед использованием драйвера.

Ограничение тока

Перед использованием драйвера нам нужно сделать небольшую настройку. Нам нужно ограничить максимальный ток, протекающий через катушки шагового двигателя, и предотвратить превышение номинального тока двигателя.

Ограничение тока

На драйвере A4988 есть небольшой потенциометр, который можно использовать для установки ограничения тока. Вы должны установить ограничение по току равным или ниже номинального тока двигателя.

Для этого есть два метода:

Способ 1:

В данном случае мы собираемся установить ограничение тока путем измерения напряжения (Vref) на выводе «ref».

  1. Взгляните на техническое описание вашего шагового двигателя. Запишите его номинальный ток. В нашем случае мы используем NEMA 17 200 шагов/об, 12 В 350 мА.
  2. Переведите драйвер в полношаговый режим, оставив три контакта выбора микрошага отключенными.
  3. Удерживайте двигатель в фиксированном положении, не синхронизируя вход STEP.
  4. Во время регулировки измерьте напряжение Vref (один щуп мультиметра на минус питания, а другой к металлическому корпусу потенциометра).
  5. Отрегулируйте напряжение Vref по формуле:

ограничение тока = Vref x 2,5

Например, если ваш двигатель рассчитан на 350mA, вы должны установить опорное напряжение 0,14В.

Ограничение тока - способ 1

Способ 2:

В данном случае мы собираемся установить ограничение тока, измеряя ток, протекающий через катушку двигателя.

  1. Взгляните на техническое описание вашего шагового двигателя. Запишите его номинальный ток. В нашем случае мы используем NEMA 17 200 шагов / оборот, 12 В 350 мА.
  2. Переведите драйвер в полношаговый режим, оставив три контакта выбора микрошага отключенными.
  3. Удерживайте двигатель в фиксированном положении, не синхронизируя вход STEP. Не оставляйте вход STEP висящим в воздухе, подключите его к источнику питания логики (5 В)
  4. Подключите амперметр последовательно с одной из катушек шагового двигателя и измерьте фактический ток.
  5. Возьмите небольшую отвертку и отрегулируйте потенциометр ограничения тока, пока не установите номинальный ток шагового двигателя.

Ограничение тока - способ 2

Подключение драйвера шагового двигателя A4988 к Arduino UNO

Теперь, когда мы имеем всю необходимую информацию о драйвере A4988, мы можем перейти к подключению его к нашей Arduino Uno .

Подключения довольно простое. Начните с подключения VDD и GND (рядом с VDD) к контактам 5V и минус на Arduino. Входные контакты DIR и STEP подключите к цифровым контактам №2 и №3 на Arduino соответственно. Шаговый двигатель подключите к контактам 2B, 2A, 1A и 1B.

Предупреждение:

Подключение или отключение шагового двигателя при включенном драйвере может привести к его повреждению.

Затем подключите вывод RST к соседнему выводу SLP/SLEEP, чтобы драйвер оставался включенным. Также держите контакты выбора микрошага отключенными, чтобы двигатель работал в полношаговом режиме.

Наконец, подключите источник питания двигателя к контактам VMOT и GND. Не забудьте установить большой развязывающий электролитический конденсатор 100 мкФ на контакты источника питания двигателя, рядом с платой.

Код Arduino — простой пример

Следующий скетч даст вам полное представление о том, как управлять скоростью и направлением вращения биполярного шагового двигателя с помощью драйвера шагового двигателя A4988, и может служить основой для более практических экспериментов и проектов.

Пояснение к скетчу:

Скетч начинается с определения выводов Arduino, к которым подключены выводы STEP и DIR A4988. Мы также определяем stepsPerRevolution. Установите его в соответствии со спецификациями шагового двигателя.

В разделе setup() кода все контакты управления двигателем объявлены как цифровой выход.

В цикле loop() мы медленно вращаем двигатель по часовой стрелке, а затем быстро вращаем его против часовой стрелки с интервалом в секунду.

Управление направлением вращения: для управления направлением вращения двигателя мы устанавливаем вывод DIR в высокое или низкое положение. Сигнал высокого уровня вращает двигатель по часовой стрелке, а низкого — против часовой стрелки.

Скорость двигателя определяется частотой импульсов, которые мы посылаем на вывод STEP. Чем чаще импульсы, тем быстрее вращается двигатель. Импульсы — это не что иное, как установка высокого уровня, некоторое ожидание, затем установка низкого уровня и снова ожидание. Изменяя задержку между двумя импульсами, вы изменяете частоту этих импульсов и, следовательно, скорость двигателя.

Скетч Arduino — использование библиотеки AccelStepper

Управление шаговым двигателем без библиотеки идеально подходит для простых приложений с одним двигателем. Но если вы хотите управлять несколькими шаговыми двигателями, то вам понадобится библиотека.

Итак, для нашего следующего эксперимента мы будем использовать расширенную библиотеку шаговых двигателей под названием AccelStepper library. Она поддерживает:

  • Ускорение и замедление.
  • Одновременное управление несколькими шаговыми двигателями с независимым шагом для каждого двигателя.

Эта библиотека не включена в IDE Arduino, поэтому вам необходимо сначала установить ее.

Установка библиотеки

Чтобы установить библиотеку, перейдите в Эскиз> Include Library> Manage Libraries… Подождите, пока диспетчер библиотек загрузит индекс библиотек и обновит список установленных библиотек.

Установка библиотеки

Отфильтруйте результаты поиска, набрав «Accelstepper». Щелкните первую запись и выберите «Установить».

Скетч Arduino

Вот простой код, который ускоряет шаговый двигатель в одном направлении, а затем замедляется, чтобы остановиться. Как только двигатель совершает один оборот, он меняет направление вращения. И он повторяет это снова и снова.

Пояснение к скетчу:

Мы начинаем с подключения недавно установленной библиотеки AccelStepper.

Определяем выводы Arduino, к которым подключаются выводы STEP и DIR A4988. Устанавливаем motorInterfaceType значение 1. (1 означает внешний шаговый драйвер с выводами Step и Direction).

Затем мы создаем экземпляр библиотеки с именем myStepper.

В функции setup() мы сначала устанавливаем максимальную скорость двигателя 1000. Затем мы устанавливаем коэффициент ускорения для двигателя, чтобы добавить ускорение и замедление к движениям шагового двигателя.

Затем мы устанавливаем обычную скорость 200 и количество шагов, например, 200 (поскольку NEMA 17 совершает 200 шагов за оборот).

В функции loop() мы используем оператор If, чтобы проверить, как далеко двигателю нужно проехать (путем чтения distanceToGo), пока он не достигнет целевой позиции (moveTo). Как только distanceToGo станет равен нулю мы переключаем двигатель в противоположное направление, изменив moveTo на противоположное значение относительно его текущего положения.

Теперь в конце цикла мы вызываем функцию run(). Это самая важная функция, поскольку шаговый двигатель не будет работать, пока эта функция не будет выполнена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *