Что нужно использовать для назначения режима работы пинов arduino

Функция arduino pinMode

pinMode в Arduino помогает установить режим работы пина для выполнения операций считывания или записи. Как правило, эта функция используется внутри метода setup () и выполняется один раз при запуске программы. Неправильное выставление режима входов и выходов ардуино может сказать на работоспособности проекта и платы. В этой статье мы узнаем, как пользоваться pinMode, в каких случаях ее можно опустить, а в каких она обязательна.

Синтаксис функции

Функция не возвращает значения.

Описание параметров

В параметре <номер пина> указываем порт, который хотим сконфигурировать. Как правило, функция используется для установки цифровых пинов, т.к. аналоговые пины ардуино чаще всего используются как входные, а входной режим используется Arduino по умолчанию.

В параметре <тип> указываем тип режима работы пина (более подробно о возможных режимах мы поговорим чуть позже).

Константы INPUT, OUTPUT и INPUT_PULLUP

В Ardino предусмотрены константы, обозначающие варианты типов:

  • INPUT (значение по умолчанию);
  • OUPUT;
  • INPUT_PULLUP.

Примеры использования

  • pinMode(13, OUTPUT); // Установили 13 пин как выход
  • pinMode(2, INPUT); // Так делать не надо. По умолчанию, все пины работают в режиме входа.

Зачем нужна функция pinMode

Режимы работы портов и функция pinMode входят в число первых вопросов, возникающих у начинающих ардуинщиков. Действительно, зачем нам нужно определять самим тип порта и почему микроконтроллер не может это сделать самостоятельно?

Для ответа на вопрос нам нужно немного окунуться в электронику. Вспомните, что мы пишем программу не для абстрактного компьютера, а для вполне конкретного устройства, схема которого может кардинально отличаться от проекта к проекту. Вы можете подключить к плате Arduino огромное количество разнообразных устройств с совершенно разными характеристиками (сопротивление, емкость и т.п.). Присоединив их к Arduino, вы создаете совершенно новую электрическую схему, в которой должны быть уже учтены параметры, как самой платы, так и внешних устройств. Так, например, подключение двигателя, который потребляет высокий ток (особенно в момент старта и остановки) будет сильно отличаться по схеме от подключения какого-либо датчика. В некоторых случаях Ардуино становится источником питания, в некоторых &#8211; просто вольтметром, а это совершенно разные режимы работы: в первом случае нужно по возможности снизить внутреннее сопротивление (можно придумать такую аналогию &#8211; мы громко говорим, нужно чтобы ничего не мешало) а во втором &#8211; наоборот, максимально поднять (мы слушаем, рот можно закрыть).

Электрическое сопряжение – очень непростое дело и самостоятельно новичку разобраться во всех нюансах было бы очень не просто. Тем более, что для работы с каждым типом устройств желательно создавать свою уникальную схему подключения и подбирать радиоэлементы (резисторы, конденсаторы), обеспечивающие наиболее безопасный и энергоэффективный режим работы. К счастью, в некоторых случаях Arduino берет часть работы на себя, подключая или отключая необходимый способ сопряжения, если вы укажете ему прямо в программе, в каком режиме работы должны находиться пины. Именно это и делается с помощью функции ардуино pinMode. Указав номер порта и тип подключения, вы тем самым заставляете Arduino задействовать или отключать необходимые элементы платы. Полученный результат в большинстве случаев достаточно хорошо решает проблему сопряжения нескольких электронных компонентов.

Режимы работы пинов Arduino

Как правило, каждый пин платы Arduino работает в двух возможных режимах: или в качестве входа или в качестве выхода. Для установки режима работы Arduino в основном используется два варианта параметров: INPUT и OUTPUT. Но иногда при работе с датчиками нужно выставить пин в режим с неявно подключенным внутренним резистором, поэтому в нашем арсенале есть еще одна константа, определяющая тип пина: INPUT_PULLUP.

Pin INPUT

Режим INPUT определяет высокоимпедансное состояние пина для работы с внешними источниками сигналов (как правило, это различные варианты датчиков, от которых поступают показания, отсюда слово INPUT). Другими словами, в этом состоянии вы можете подключить практически любую нагрузку, потому что к входу неявным образом подключается высокоомный (десяток мегаом) резистор.

Для установки режима INPUT нужно использовать следующую команду:

pinMode(<номер порта>, INPUT);

По умолчанию, все пины Arduino установлены в режим INPUT, поэтому указывать это явно не требуется и команда с такой константной практически не встречается в реальных проектах.

Pin OUTPUT

В режиме OUTPUT Arduino поддерживает пин в низкоимпедансном состоянии, при котором на внешнее устройство выдается максимально возможный ток (плата, по сути, становится источником тока). В этом режиме обычно работают пины Arduino с подключенными светодиодами, сервоприводами (маломощными), пьезоизлучателями, реле, драйверами двигателей и другими внешними устройствами, являющимися для Arduino внешними (отсюда слово OUTPUT). Для установки пина в режим OUTPUT нужно использовать следующую команду:

pinMode(<номер порта>, OUTPUT);

Pin INPUT_PULLUP

Функция arduino pinMode

В режиме INPUT_PULLUP пин работает в режиме входа, но Arduino неявно для нас подключает к входной цепи внутренний подтягивающий резистор. При этом поступление сигнала с датчика будет «инвертироваться», т.е. высокий уровень будет приводить к нулю на входе, низкий, наоборот, оставит на пине высокое напряжение.

Функция arduino pinMode

Режим INPUT_PULLUP широко используется при работе с кнопками в Ардуино. В не нажатом состоянии подключенная к пину кнопка создает неопределенное состояние (а провод, ведущий к Arduino выступает в роли своеобразной антены, усиливающей все наводки). Для исправления ситуации в схему добавляют подтягивающий резистор. Использование команды pinMode с параметром INPUT_PULLUP позволяет обойтись без дополнительного внешнего сопротивления, используя внутренний резистор Arduino.

Альтернативным способом использования INPUT_PULLUP является подача высокого уровня напряжения на вход, находящийся в режиме INPUT. Команда digitalWrite(10, HIGH) для пина 10, установленного в режим INPUT, включит внутренний резистор так же, как это сделала бы команда pinMode(10, INPUT_PULLUP).

Теперь для вас должно стать понятно, почему даже в простых схемах ваши светодиоды иногда светились очень тускло: вы просто забывали установить для них тип OUTPUT, а когда включали c помощью команды digitalWrite, вы подсоединяли встроенный резистор, тем самым ограничивая ток и степень свечения светодиода.

Цифровые и аналоговые пины Ардуино

Назначение пинов Arduino плат: Uno, Nano, Mega 2560

Назначение пинов Arduino плат: Uno, Nano, Mega 2560 &#8212; важная информация, для тех кто начал свое знакомство с микроконтроллерами этого семейства. Мы решили в этом обзоре максимально подробно описать аналоговые, цифровые и шим пины Arduino, также вы узнаете, как сделать аналоговые пины цифровыми. Еще мы рассмотрим назначение пинов с дополнительными функциями: SDA и SCL, TX и RX, и другие.

Аналоговые, цифровые и шим пины Ардуино

Все пины можно разделить на несколько видов, различие будет только в количестве данных выводов на различных платах. Например, на Arduino Mega 2560 цифровых и аналоговых портов, значительно больше, чем на Uno или Nano из-за большего размера платы и производительности микроконтроллера. В остальном характеристики и способы программирования пинов не отличаются друг от друга.

  1. Power Pins &#8212; порты питания, режим их работы нельзя запрограммировать или изменить. Они выдают стабилизированное напряжение 5V или 3,3V, Vin выдает напряжение от источника питания, а GND &#8212; это заземление (общий минус);
  2. PWM Pins &#8212; порты с ШИМ модуляцией, которые можно запрограммировать, как цифровой выход/вход. Данные порты обозначены на плате знаком тильда (˜);
  3. Analog In &#8212; порты, принимающие аналоговый сигнал от датчиков, работают на вход. Данные порты тоже можно запрограммировать, как цифровой вход/выход. Данные пины не поддерживают ШИМ модуляцию.

Режим пинов назначается в процедуре void setup с помощью pinMode(), например:

Пояснения к коду:
  1. к выходу 10 и A2 можно подключить светодиод, который будет включаться и выключаться при вызове команды в программе;
  2. пин 10 может использоваться для ШИМ сигнала, например, чтобы плавно включить светодиод, а пин A2 может выдавать только цифровой сигнал (0 или 1);
  3. к входу 12 и A1 можно подключить цифровой датчик и микроконтроллер будет проверять наличие сигнала на этих пинах (логический нуль или единицу);
  4. к входу A1 можно подключить аналоговый датчик тогда микроконтроллер будет получать не только сигнал но и узнавать характеристику сигнала.

Мы не случайно разделили пины с ШИМ модуляцией (PWM Pins) и аналоговые. PWM пины создают аналоговый сигнал, к ним подключают сервопривод, шаговый двигатель и другие устройства, где требуется подавать сигнал с разными характеристиками. Аналоговые пины (Analog In) используются для подключения аналоговых датчиков, с них входящий сигнал преобразуется в цифровой с помощью встроенного АЦП.

Ардуино Uno пины: шим, аналоговые, цифровые

Arduino UNO распиновка платы на русскомArduino UNO распиновка платы на русском

ШИМ (PWM) порты
(Analog Out)
3, 5, 6, 9, 10, 11
Аналоговые порты
(Analog In)
A0, A1, A2, A3, A4, A5
на некоторых платах: A6, A7
Цифровые порты
(Digital In/Out)
все порты со 2 по 13 пин
можно использовать: A0 &#8212; A7

Из таблицы видно, какие пины на Arduino UNO поддерживают шим. Аналоговые пины (Analog In) используют, как цифровые если недостаточно портов общего назначения, например, вы хотите подключить к плате 15 светодиодов. Кроме того, на плате Arduino Uno и Nano порты A4 и A5 используются для I2C протокола (SDA и SCL пины) &#8212; они работают параллельно с пинами A4 и A5. Об этом мы расскажем чуть позже.

Ардуино Nano пины: шим, аналоговые, цифровые

Arduino Nano распиновка платы на русскомArduino Nano распиновка платы на русском

ШИМ (PWM) порты
(Analog Out)
3, 5, 6, 9, 10, 11
Аналоговые порты
(Analog In)
A0, A1, A2, A3, A4, A5
на некоторых платах: A6, A7
Цифровые порты
(Digital In/Out)
все порты со 2 по 13 пин
можно использовать: A0 &#8212; A7

Если вы заметили, то пины на Arduino Nano и Uno имеют одинаковое количество и назначение. Платы отличаются лишь своими габаритами. Nano &#8212; более компактная и удобная плата, для экономии места на нее не ставят разъем питания, для этого используются пины Vin и GND на которое подается питание от источника.

Ардуино Mega пины: шим, аналоговые, цифровые

Схема распиновки платы Arduino Mega 2560 r3Схема распиновки платы Arduino Mega 2560 r3

ШИМ (PWM) порты
(Analog Out)
все порты со 2 по 13 пин
дополнительно: 44, 45, 46 пин
Аналоговые порты
(Analog In)
с A0 до A15
Цифровые порты
(Digital In/Out)
все порты со 2 по 13, со 22 по 52 пин
можно использовать: A0 &#8212; A15

Пины коммуникации нежелательно использовать, как обычные цифровые порты. Особенно при таком количестве портов общего назначения, как на Mega 2560. Более подробную информацию о рассмотренных платах, а также о других микроконтроллерах семейства Arduino (Pro Mini, Leonardo, Due и пр.): характеристики, описание пинов, габариты и т.д. можно узнать в разделе Микроконтроллеры на нашем сайте.

Аналоговые пины Ардуино, как цифровые

Как вы уже поняли, при подключении большого количества устройств к плате, пинов общего назначения может не хватить. Тогда в скетче указываете, что вы используете аналоговые пины, как цифровые. Также можно использовать не буквенное, а цифровое обозначение выходов, т.е. A0 &#8212; это 14 пин, A1 &#8212; это 15 пин и т.д. (работает только на Uno или Nano). В следующем примере две строчки имеют одинаковое значение.

Пины коммуникации на плате Arduino

Назначение пинов SDA, SCL Arduino

Данные пины используются для приема/передачи информации по протоколу I2C. Например, при подключении жк дисплея с модулем I2C или GPS модуля. С помощью специальной библиотеки микроконтроллер может обмениваться информацией с подключенным периферийным устройством, поддерживающим данный протокол. На Ардуино Мега, в отличии от Уно и Нано, имеется целых три пары пинов SDA, SCL.

Назначение пинов TX, RX Arduino

Пины TX/RX также используются для коммуникации, но уже по протоколу UART. На платах Уно и Нано пины TX/RX подключены параллельно USB разъему для связи с компьютером. Поэтому, если вы подключите к данным портам устройство, например, блютуз модуль, то вы не сможете загрузить в Ардуино скетч, так как плата автоматически переключается на чтение данных с устройства, а не с компьютера.

Ардуино для начинающих. Урок 14. Прерывания.

В этом уроке мы поговорим о прерываниях. Как понятно из названия, прерывание это событие, которое приостанавливает выполнение текущих задач и передает управление обработчику прерывания. Обработчик прерывания &#8212; это функция. Например: если вы написали скетч по управлению мотором или просто плавно зажигаете и гасите светодиод в цикле, то нажатие на кнопку может не обрабатываться, так как Arduino в данный момент занята другой частью кода. Если же использовать прерывание, то такой проблемы не возникнет, так как прерывания имеют более высокий приоритет.

В ардуино есть прерывания по таймеру и аппаратное прерывание. Далее я подробнее расскажу что это, как это использовать и зачем оно вам нужно.

В этом уроке используется:

Отличный набор для начинающих: Купить
Arduino Uno: Купить
Инфракрасный датчик расстояния: Купить
Инвертирующий триггер шмитта: Купить
Комплект конденсаторов 120 штук: Купить

Аппаратные прерывания

В Arduino имеется 4 вида аппаратных прерываний. Отличаются они сигналом на контакте прерывания.

  • Контакт прерывания притянут к земле. Ардуино будет выполнять обработчик прерывания пока на пине прерывания будет сигнал LOW.
  • Изменение сигнала на контакте прерывания. Ардуино будет выполнять обработчик прерывания каждый раз когда на пине прерывания будет изменяться сигнал.
  • Изменение сигнала на контакте прерывания от LOW к HIGH. Обработчик прерывания исполняется только при изменении низкого сигнала на высокий.
  • Изменение сигнала на контакте прерывания от HIGH к LOW. Обработчик прерывания исполняется только при изменении высокого сигнала на низкий.

Если прерывание ожидает нажатия кнопки, то это может стать проблемой из-за дребезга контактов. В 6 уроке мы уже говорили о дребезге контактов. Тогда мы использовали функцию delay(), но в прерываниях данная функция не доступна. Поэтому нам придется подавить дребезг контактов немного усложнив схему подключения кнопки к пину прерывания. Для этого понадобится резистор на 10 КОм, конденсатор на 10 микрофарад,
и инвертирующий триггер шмитта. Подключается все по следующей схеме:

подключение кнопки прерывания ардуино

подключение кнопки прерывания ардуино

В Arduino Uno есть два пина, поддерживающие прерывания. Это цифровые пины 2 (int 0) и 3 (int 1). Один из них мы и будем использовать в нашей схеме.

Предлагаю сделать устройство, которое будет поочередно изменять яркость светодиодов в зависимости от показаний инфракрасного датчика расстояния, а по нажатию на кнопку прерывания будем переходить от одного светодиода к другому. Наше устройство будет выглядеть примерно вот так:

Использование прерываний Arduino

Использование прерываний Arduino

Схема кажется сложной и запутанной, но это не так. Мы подключаем кнопку прерывания к пину Arduino D2, используя аппаратное подавление дребезга контактов. К аналоговому пину A0 мы подключаем инфракрасный дальномер. И к пинам D9, D10 и D11 мы подключаем светодиоды через резисторы на 150 Ом. Мы выбрали именно эти контакты для светодиодов, потому что они могут выдавать ШИМ сигнал.Теперь рассмотрим скетч:

Обратите внимание на следующие моменты: Необходимо использовать ключевое слово &#171;volatile&#187; перед объявлением переменной значение которой будет изменяться в обработчике прерывания. Так же я добавил переменную &#171;nullLed&#187; для того что бы программа на определенном шаге не меняла цвет ни одного из подключенных светодиодов. Строка &#171;attachInterrupt(buttonInt, swap, RISING);&#187; назначает обработчиком прерывания функцию swap. Подробнее об этой функции вы можете почитать здесь.

Функция swap просто переключает текущий светодиод на следующий. Остальной скетч должен быть вам понятен, если вы посмотрели все предыдущие уроки. Это последний обучающий урок. В следующих статьях я расскажу о подключении к Arduino популярных модулей.

Добавить комментарий

Ваш адрес email не будет опубликован.